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Abstract

With resonant configurations commonly observed on the scale of the solar sys-

tem, the mutual gravitational interactions which lead to resonance are assumed

to play a role in sculpting the architectures of planetary systems beyond our own.

We present a metric, the commensurability offset index (COI), which measures the

offset from a system containing a chain of orbital periods in pure integer commen-

surability ratios and allows for comparisons across the entire sample of transiting

systems with N > 2 planets. This summary statistic is a measure of how close

to commensurability a system needs to be for resonance to have impacted the

orbital evolution of a system. We explore a range of simulated planetary popula-

tions and orbital architectures the evaluate the robustness and magnitude of this

overabundance of systems near resonance. We compare the COI distributions of

the observed transiting sample to various model populations designed to mimic

the transiting multiplanet sample, dominated by systems discovered by the Kepler

space telescope. In this analysis, we find an overabundance of observed systems

near resonance peaking at COI = 0.0211 with a standard deviation of σ = 0.0141.

We discuss how this summary statistic may be used in predictive modeling for

searching for additional planets in N = 2 planet systems and compare the appli-

cation of COI to other relevant populations, including angular substructures in

planet-forming disks and various groupings of solar system objects.



“By a small sample, we may judge of the whole piece”

–Miguel de Cervantes, Don Quixote
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Chapter 1

Introduction

Exoplanets are planetary bodies orbiting a star other than the Sun. For much

of the past century, the existence of exoplanets was largely assumed but unsup-

ported by any observational evidence (e.g. Struve 1952). From the first confirmed

detections in the 1990s, the subsequent decade saw the refinement of an array

of techniques now widely used to uncover a booming and diverse population of

exoplanets and their host stars (e.g. Wolszczan & Frail 1992; Mayor & Queloz

1995). These include both photometric and spectroscopic methods—methods of

measuring the light of a host star to infer the presence of exoplanets—which can be

readily done with even modest ground-based telescopes and have also motivated

several space-based planet-hunting surveys in subsequent decades (e.g. Kepler,

TESS). From this ongoing observational effort now more than 5500 planets have

been observed in more than 4100 systems, with hundreds of new exoplanets and

systems confirmed each year.

Here we introduce the most fruitful of the detection methods, the transit

method, which has evidenced more than 70% of all confirmed exoplanets, and

the ways that this technique has been applied through large surveys to produce

the sample we see today. We also introduce the biases inherent to the detection

of transiting exoplanets, as well as some notable trends in the dynamics of exo-

planets that particularly characterize the subset of systems that contain multiple



1. Introduction 2

planets. This will help inform the nature of this large and growing transiting

population, which in future sections we model with statistical simulations and dy-

namical analysis. To get there, though, we must first understand this population

at the base observational level.

1.1 Transiting Exoplanets

Figure 1.1: Exoplanet transit and occultation diagram from Winn (2010). Transit
detections search for periodic dips in the total flux from the star caused by a planet
passing in front of an observer’s view of the star. These events are accompanied by
occultations, where the total flux dips even more slightly due to the star blocking the
reflected light by the planet as it passes behind the star.

A transit occurs when an exoplanet passes through the line of sight from Earth

to its host star (see Fig. 1.1) and is characterized by a slight decrease in the light

received from the star as the planet passes over it. These occur periodically with

each orbit, and are accompanied by an even slighter occultation event when the

planet passes behind the star (also seen in Fig. 1.1), though transits are more

easily observed due to the much greater change in the stellar flux that they cause.
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Due to their periodic nature of occurring with every orbit, and as the change

in flux is caused by the planet blocking out a part of the star’s light, the orbital

period and radius of the planet are direct observables by the transit method. The

orbital period P is the difference between the midpoints tmid of two succesive

transits, given by

P = tmid,2 − tmid,1. (1.1)

While two transits are required to constrain orbital period, at least three are

required for a confirmed planet detection. Planets with an insufficient number of

transits detected by a survey are referred to as candidate planets and are often

cataloged for follow-up monitoring by other facilities (e.g. Stassun et al. 2018).

The planet radius Rp is given by

Rp =
√
δRs, (1.2)

where δ is the observed transit depth and Rs is the radius of the star. Note

that transit depths are often measured in parts per thousand (ppt) or parts per

million (ppm) normalized to the base out-of-transit flux of the star. Ground-

based telescopes are generally limited by atmospheric interference and produce

most significant detections for transit depths on the order of greater than 10 ppt,

while space-based observatories can detect planets at the same significance with

depths at ppm scale (e.g. Mallonn et al. 2022).

The primary observational limitation of the transit method is the precise view-

ing geometry required for a transit event to occur. The inclination angle (i) of a

detected planet’s orbit must be such that the planet passes over the face of the

star, leaving only a small window of observability for all possible planet configu-
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Figure 1.2: Detection count of new transiting planets by year. Source: NASA Exo-
planet Archive

rations. This window is generally within ±1◦ of coplanarity with the line of sight

to the observer, leaving only about 1% of all planetary systems observable by the

transit method.

Despite this limitation, transit surveys have been very effective at detecting

a large population of planets, which we introduce further in Sec. 1.2. In Fig.

1.2 and Fig. 1.3 we provide the timeline for the increase in detected transiting

exoplanets over the past two decades. Here note two large increases in 2014 and

2017. These correspond to large data releases by the Kepler space telescope, both

part of its initial observations and its successor mission K2 (see Howell et al. 2014;

Fulton et al. 2017; Petigura et al. 2017; Johnson et al. 2017; Thompson et al. 2018).

Kepler is the most prolific planet-hunting survey conducted to date. Over 10 years

of observations, in a single well-populated observing field for the initial mission

(2009–2013) and along the ecliptic for K2 (2014–2018), the facility discovered

more than 2700 exoplanets. These fields are particularly noted in Fig. 1.4, where

we give the sky position (R.A./Dec.) of all confirmed transiting systems.
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Figure 1.3: Same as Fig. 1.2, but for transiting planets in systems containing N > 2
planets. Source: NASA Exoplanet Archive

The Kepler space telescope took its final observations in 2018, but subsequent

planet-hunting survey work is led by the Transiting Exoplanet Survey Satellite

(TESS). Rather than probing a single patch of sky with multiple years of obser-

vations, TESS observes 85% of the sky for a minimum of 27.4 days. This gives

a much wider survey range but a lower likelihood of confirming planets with low

transit probability (Ricker et al. 2015). About 400 exoplanets have been confirmed

from TESS detections to date, with several thousand planet candidates awaiting

follow-up observation for confirmation.

These two surveys have provided the most robust and standardized population

of exoplanets to date. In the next section we discuss the nature of this population,

introducing the observed sample to date and the detection biases of these transit

surveys that shape what we see. Particularly, we introduce and focus on the

population of systems containing multiple planets (see Fig. 1.3), which display

resonant dynamical interactions that, in further sections, we seek to contextualize

within the entire transiting population at large.
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Figure 1.4: Sky position of all confirmed exoplanet detections across all detection
techniques. Note the concentration of sources in the upper right and along the ecliptic,
these are sources in the Kepler observing field and on the area of highest cadence for K2,
the most productive planet-hunting surveys to date. Source: NASA Exoplanet Archive.

1.2 Exoplanets as a Population

As introduced in Sec. 1.1, the past two decades have seen a massive increase in

the number of known exoplanets, particularly thanks to the planet-hunting space

telescopes Kepler (launched in 2009, retired 2018) and TESS (launched in 2018,

ongoing). More information on these missions and their specifications is given by

Borucki (2016) and Ricker et al. (2015), respectfully.

Across the board, transit surveys are biased toward detecting short-period

(close-in) planets and against detecting long-period (far-out) planets. This is

because the probability of observing a transit of a planet scales against orbital

period and planet size. Assuming a uniform distribution of inclination angles and

that the orbital eccentricity e = 0 for all planets across a survey, the probability

that a planet will transit its host star (excluding grazing passes) is given by

Ptra =
Rs −Rp

a
, (1.3)

where Rs is the radius of the star, Rp is the radius of the planet, and a is
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Figure 1.5: Fig. 1 from Lissauer et al. (2023). Period-radius relationship for the
Kepler candidate systems studied therein, labeled by the number of transiting planet
candidates observed in each system.

the semimajor axis (note that a ∝ P 2/3 by Kepler’s third law, where P is the

orbital period). As there is a large variation in possible orbital periods, from less

than a day to upwards of hundreds of days, compared to the spread in planet

radius (visible in Fig. 1.5), the decrease in probability of detection is particularly

dominated by orbital distance (Lissauer et al. 2023).

Combining these selection factors, consider the prospect of observing the Earth

as an exoplanet (Robinson & Reinhard 2018). No transit survey designed to date

would be able to detect an earth-sized planet in an Earth-sized orbit around a

sun-like star using the transit method, due to the weak transit depth (rearranging

Eqn. 1.2 gives δ⊕ = 0.08 ppm) and low transit probability (Ptra = 0.005 due to its

long-period ≈365 day orbit). Note that Ptra = 0.005 implies that in an observed

sample population not limited by observing cadence (i.e. constantly observed
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Figure 1.6: Period ratios of adjacent planet pairs for the sample of planetary systems
with three or more transiting planets.

for a minimum of 365 days), only 1 in 200 stars containing earth-sized planets

would have a transit detection. This also assumes that the survey could resolve a

sufficiently small δ⊕ and have a short enough exposure to capture the duration of

the transit (for earth this would be ≈ 12 hr) with a sufficiently high signal-to-noise

ratio. This is an incredibly unlikely proposition.

We show the Kepler transiting sample in Fig. 1.5, taken from Lissauer et al.

(2023). Note the slight upward relationship between period and radius, which

can be interpreted as a weak period-radius relation. This makes sense intuitively

as, for one, planets within the solar system tend to have bigger radii further out

from the Sun. This may also be an observational artifact, as small planets at

high orbital separations have the lowest transit detection probability according

to Eqn. 1.3. The cause is still debated, and we discuss the underlying observed

phenomenon that may lead to this observed trend (the “peas in a pod” model)

more in Chapter 5.

There is a tendency for exoplanets to converge around “resonant” configura-

tions, where the orbits of successive planets occur in integer ratios. We show this in

Fig. 1.6, where the orbital period ratios of adjacent planets in systems containing
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N > 2 planets cluster around resonant configurations. This was notably identified

in data from Kepler/K2 (Fabrycky et al. 2014) and reflects a phenomenon that is

observed widely within the solar system (Murray & Dermott 2000). There also

appears to be spread off of the exact resonance values, particularly the strong 3:2

and 2:1 resonances, so that the abundance of systems caused by the resonance is

slightly offset, leaving ambiguity as to the exact definition of whether a system is

“in proximity” to the resonance or not. We discuss the significance of this, and

how it frames the inquiry of this thesis, in Chapter 2.

1.3 A Note on Astrophysical Population Science

Each and every object studied by astronomers is, without exception, a con-

stituent of some much larger and ultimately unobservable population. Astro-

physics is a science of samples and surveys, limited by many considerations in-

trinsic both to our instruments and the objects we design them to observe. These

limitations, which we call “incompleteness factors” and “observational biases”,

ultimately prevent us from gathering a complete catalog of every possible source,

and cause certain sources and events to be observed more effectively and others

to be suppressed in survey observations. Such is seen all across astrophysics, from

surveys of stars (Gaia Collaboration et al. 2018), galaxies (Almeida et al. 2023),

and compact objects (Stovall et al. 2014), but are especially pertinent in transient

astrophysics (e.g. Pereira et al. 2023; McGregor & Lorimer 2024) and exoplanet

science.
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Figure 1.7: KS test demonstration plots described in Sec. 1.4.1. We include the KS
statistic and p-value for a two-sided KS test between the model (red) and empirical
(blue) cumulative distribution functions.

1.4 Statistical Methods

Fortunately, such a population-limited science can make good use out of sta-

tistical techniques to generate models and compare them to observations, which

can be used to inform and seek out biases in observed sample populations. In

this section we introduce two widely-used statistical methods, the Kolmogorov-

Smirnov test and Markov Chain Monte Carlo, which will be applied in Chapters

3 and 4 to simulated exoplanet populations.

1.4.1 Kolmogorov-Smirnov (KS) Test

In general, the Kolmogorov-Smirnov test compares the cumulative distribution

function (CDF) of two probability distributions to determine some shared property

about the two distributions. There are three variants of the test (Babu & Feigelson

1996), with an “upper” variant that gives the likelihood a given distribution is

systematically greater than another, and a “lower” variant that gives the opposite.

However, the most used version for this work, and most astrophysical populations,
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is the “two-sided” variant. This test gives the likelihood that the two distributions

share some underlying source distribution or may have been drawn randomly from

each other, which is useful for population science as it serves as a “goodness-of-fit”

type measurement for comparing empirical data against a well-populated model.

An example of the KS test procedure is shown in Fig. 1.7, comparing a well-

populated (nmodel = 105) Gaussian CDF against a smaller “empirical” (nemp =

200) CDF drawn from the same underlying distribution (σ = 1). The test essen-

tially determines the probability that the largest difference between the two CDFs

(the KS statistic) occurred randomly, given by the p-value. A p-value above 0.05 is

considered statistically significant for the empirical distribution being drawn from

the model. As the distributions share the same underlying probability density

function the p-value from the test is very significant and the KS statistic is low.

If we vary the parameters of the model CDF, say (σ = 0.8, x0 = 0), this results

in a higher KS statistic and a much lower p-value, as shown on the figure.

With a sufficiently physically-minded model distribution to compare to ob-

served data, the KS test can serve as evidence of parity between a model and

observations. Such procedure is, as mentioned, ubiquitous across astrophysical

population science (see, e.g., James 2023; McGregor & Lorimer 2024).

1.4.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a suite of algorithms for multidimen-

sional parameter estimation. Essentially, it allows for data to be fit to a model

described by an arbitrary number of parameters through iteratively sampling dis-

tributions that converge on the parameters’ most likely values. More specifically

used in astrophysics, we use the Metropolis-Hastings algorithm, which is particu-
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larly useful for sampling models with a large number of possibly degenerate (that

is, dependent) parameters.

To give a high-level overview, this algorithm uses an iterative process for find-

ing the distribution of possible values of a given parameter, known as a Bayesian

framework. Using Bayes’ theorem, the value of a parameter is slightly varied over

the course of the algorithm for a certain number of steps. Using this Bayesian

framework for many parameter variations along a random walk, MCMC allows

us to construct a posterior distribution for each model parameter θ given an

empirically-determined dataset d. Each iteration of the algorithm applies the the-

orem to evolve the posterior distribution given the fit of the parameters to the

dataset. Bayes’ theorem is given by

P (θ|d) = P (θ)P (d|θ)
P (d)

, (1.4)

where P (θ|d) is the posterior distribution for each parameter, P (θ) is the prior

distribution for each parameter, P (d|θ) is the likelihood function for the data being

generated by a certain parameter value, and P (d) is an arbitrary normalization

factor unimportant for running MCMC. Each MCMC run requires some specified

number of steps and walkers, where the number of steps dictates the length of

the Markov process and the number of walkers gives the number of samples taken

from the posterior distribution. This essentially sets the precision of the parameter

estimation, which scales with computational expense.

For further reading on the applicability of MCMC to exoplanet science and

astrophysical populations in general, see Ford (2006); Andreon & Weaver (2015);

Babu & Feigelson (1996). To implement the algorithm practically, the most

commonly-used python library is emcee (Foreman-Mackey et al. 2013).



Chapter 2

Mean Motion Resonance

Within and beyond our solar system, the gravity of orbiting satellites will in-

fluence the orbits of each companions within a system. Often this influence is

small and assumed to be negligible, but certain systems show evidence of gravi-

tational interactions influencing system architectures through tugging on bodies

well beyond that predicted by Kepler’s laws. The strongest observational evi-

dence for such interactions is the phenomenon known as mean motion resonance,

in which orbiting bodies move in whole number ratios of their orbits relative to

other planets within a system. In other words, in the time it takes an outer body

to complete a single orbit an inner planet will complete some integer N > 1 num-

ber of orbits. Chains of planets in these resonant configurations may also form

and can dominate the orbital architecture of a system.

Observations of mean motion resonance have been made since the very begin-

ning of modern Astronomy. Within our own solar system, the Galilean moons of

Jupiter–the system of Io, Europa, Ganymede, and Callisto–show orbital motions

near a tight 1:2:4 chain of orbital periods between the system’s inner three bodies.

This configuration is readily observable through timing with even a small back-

yard telescope, which the eponymous Galileo Galilei discovered in 1610 (Sidereus

Nuncius, Galilei 1610). Galileo’s discovery, of objects clearly revolving around

a central planetary body, served among the first strong observational evidence
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against the geocentric model, full stop. Now we know of entire solar systems

orbiting stars other than our own, and we have discovered many other similarly

interesting orbital configurations beyond our own host system.

2.1 A Tendency toward Commensurability

Figure 2.1: Fig. 8.30 from Murray & Dermott (2000) showing the orbital conjunctions
of the Galilean moons of Jupiter, a tight first-order commensurability chain indicating
a Laplace-type resonance.

As the observable products of planet formation and dynamical evolution, each

confirmed exoplanet system provides a window into the results of these processes.

For systems containing multiple bodies, the motion of each body in the system

will deviate from pure Keplerian motion with the gravitational influence of other

perturbing bodies. This ultimately sculpts the orbital architecture of such systems

in their evolution, which have notably been observed in planet-hunting surveys to

date (Fabrycky et al. 2014).

As discussed in the previous section, survey incompleteness factors result in

a known sample of exoplanets observationally biased towards short-period plan-

ets, particularly for multiplanet systems. Due to the close proximity of bodies in
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these systems, planet-planet gravitational interactions will strongly influence the

formation and migration of these systems–these are elements of a system’s archi-

tecture, which we can directly probe with precise timing of the orbital periods of

the planets. Such interactions which may be observable in young (< 5 Gyr old)

planetary systems (Dai et al. 2023).

The phenomenon of resonance occurring near integer ratios brings up an in-

teresting ramification. Since all observable period ratios can be approximated

by some ratio of natural numbers, are all pairs of planets in resonance? While

the analytical derivations of orbital perturbations in such systems is outside the

scope of this work (see Tremaine 2023), it is most notable when a single pair or

multiplanet chain of adjacent planets are found in proximity to some commensu-

rability ratio (p + q)/q with p ≤ 3. Specifically, pairs near a commensurability

with p = 1 as first-order, p = 2 as second-order, and p = 3 as third-order resonant

configurations. These low-order configurations are generally considered the most

stable in planet-planet interactions.

Some tight resonant systems will display the phenomenon of Laplace reso-

nance, in which a linear combination of the average orbital longitudes (λi) of each

body equals a constant resonant angle ΦL (i.e. it does not precess across successive

orbits). For the three-body case, this is given by the Laplace relation

ΦL = a1λ1 − a2λ2 + a3λ3. (2.1)

The Galilean moons system notably is situated within a Laplace resonance with

ΦL = λIo − 3λEuropa + 2λCallisto = 180◦. As this is the time-averaged relation the

Laplace relation is exact, but in reality ΦL librates with an amplitude of 0.064◦

and a period of 2071 d (values from Murray & Dermott (2000), citing Liseke
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1998). This libration occurs only in systems containing a Laplace-like resonant

chain, and has the physical meaning that no three-body orbital conjunctures will

take place and that two-body conjunctures will occur in integer fractions of ΦL.

Orbits displaying this phenomenon are illustrated in Fig. 2.1.

The seminal orbital mechanics textbook by Murray & Dermott (2000) identifies

this “tendency toward commensurability” in dynamical systems within our solar

system and beyond. Such examples include the aforementioned Galilean moons

of Jupiter (shown in Fig. 2.1), radial structure in the asteroid belt and the rings

of Saturn, as well as the co-orbital “trojan” satellites of Jupiter and other outer

solar-system planets, among many others. The advent of large-scale exoplanet

surveys has expanded the study of these dynamical phenomena to systems beyond

our solar system, and a wide diversity of planetary system architectures has been

revealed as a result of this observational effort.

2.2 The Commensurability Offset Index

Systems converging upon resonant configurations will never actually contain

a so-called “pure” resonant chain. That is, the period ratio between two bodies

will never be directly situated on the ratio of two integers–though many systems

indeed come very close. For example, we return to the prototypical Laplace-type

resonant system of the Galilean moons of Io, Europa, and Callisto. Each have

orbital periods (in days) PIo = 1.769138, PGanymede = 3.551810, PCallisto = 7.154553

(Murray & Dermott 2000). These periods are similar in order of magnitude to

the close-in transiting exoplanet sample. By convention we use the pairwise ra-

tio between each successive pair of bodies, giving PGanymede/PIo = 2.007650 and

PCallisto/PGanymede = 2.014340. These ratios are very close to the pairwise 2/1
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ratios between the three bodies in a 4:1 resonance, with offsets representing a

deviation on the order of minutes. Such offset measurements are aided by the

precise orbital periods measured for the Jovian moons through direct observation,

which is similarly granted with the high timing resolution of transit photometry.

Here we introduce a test statistic to examine the proximity of multiple adjacent

period ratios to a chain of resonances. This will allow us to probe the entire

sample of transiting multiplanet systems to compare systems’ absolute proximity

to containing a pure resonant chain. Similar to the above calculation and the

∆ value calculated for a given pair of exoplanets in Dai et al. (2023), we desire

an empirical measurement for the distance of a whole system of exoplanets from

containing a resonant chain. This system-wide summary statistic, which we have

called the Commensurability Offset Index (COI), is defined as follows:

COIn =
n∑

i=1

∣∣∣∣Pi/Pi−1

p/q
− 1

∣∣∣∣ . (2.2)

Where Pi/Pi−1 is the period ratio of adjacent planets (also written as Pi elsewhere

in this thesis) and p/q is its closest low-order resonance. As the majority of multi-

body resonant chains are among three planets and the N = 3 planet population

is the most populated within this sample, we usually take the sum to n = 2 and

will do so unless otherwise noted for the rest of the work. We give the calculated

COI values for the 12 lowest-offset systems in Table 1. We have also plotted the

period ratios for each system of COI < 1.0 in Fig. 2.3 and plot the two period

ratios put into the calculation in Fig. 2.2 to show their proximity to pure resonant

chains.

Fig. 2.3 is inspired by Fig. 1 and Fig. 2a in Fabrycky et al. (2014) and informs

the underlying dynamical trends of the multiplanet transiting population. No-
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Figure 2.2: Period ratios used in calculation of COI for each system. We include a
heatmap of the proximity to a “pure” resonant chain, shown as the intersection points
between the vertical and horizontal lines representing the commensurability ratios.

tably, the right histogram indicates that the population tends to decrease around

COI = 10−1 and 10−2, showing several systems with significantly lower COI values.

These low-COI systems correspond to systems with tight and well-constrained

resonant chains and often contain many detected planets, such as TOI-1136 (Dai

et al. 2023), Kepler-223 (Mills et al. 2016), and TRAPPIST-1 (Gillon et al. 2017).

The period ratios within these systems tend to fall on first-order ratios, partic-

ularly the 3:2 and 4:3 ratios, as most low-COI systems tend to contain strong

resonant chains dominated by these first-order commensurabilities.

This observation is supported by the period ratio histogram, which shows a

grouping of period ratios around certain commensurabilities, particularly the first-

order 3:2 and 2:1 resonances (e.g. Ghosh & Chatterjee 2023). This phenomenon

was originally identified for the Kepler/K2 sample and continues to hold for the

entire transiting sample to date.
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Table 1: Calculated COI system values for lowest offset systems as of January 1st,
2024.

System N COI
TOI-1136 6 0.00041
Kepler-223 4 0.00041
Kepler-60 3 0.00076
TRAPPIST-1 7 0.00504
K2-384 5 0.00672
Kepler-138 3 0.0117
Kepler-398 3 0.00723
Kepler-444 5 0.00898
Kepler-85 4 0.0142
Kepler-1254 3 0.0149
Kepler-54 3 0.0176
V1298 Tau 4 0.0179

2.3 Case study systems

Within the entire known population of exoplanetary systems containing multi-

ple transiting planets, we identify multiple “special case” systems that are unique

within the population due to their orbital architectures. As is shown in Fig. 2.3,

there are numerous systems with COI values on the order of 10−3 to 10−4. These

are incredibly tight resonant chains and are often the targets of a follow-up study

to probe planet-planet interactions (e.g. Shallue & Vanderburg 2018), and as such

these systems tend to contain many known planets. Outside of this regime, res-

onant interactions are still possible (and noted) within the population, though

chains of near-resonant planets are less common. Here we explore the diversity of

this population, focusing on two systems containing distinct resonant chains.
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Figure 2.3: COI values for all multiple-planet systems plotted against period ratio for
each successive planet pair therein. Low-order commensurabilities considered in this
work are shown with dashed vertical lines distinguishing their order. We include the
calculated COI values as horizontal lines for the Galilean moons and the solar system.
Symbols are colored denoting the planet pair.
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Figure 2.4: Orbit plot for GJ 9827, generated by the N -body code REBOUND (Rein
& Liu 2012) We include the orbital trajectories of a pure resonant chain (COI = 0),
assuming the same inner planet orbital period for both scenarios.

2.3.1 GJ 9827

GJ 9827 is a system of three known super-earths orbiting a K-type dwarf star in

the constellation of Pisces. First observed during the K2 mission and discovered

by a team at Wesleyan (Niraula et al. 2017), this system is notable as it is in

proximity to the second-order 1:3:5 resonant chain. As noted in Section 2.2, there

is a notable dearth of systems converged on second-order resonances. GJ 9827 is

the system of lowest COI in proximity to a chain of only second-order resonances,

which is notable as second-order resonances tend to be observed less frequently

within the solar system–with the location of the second-order 3:1 resonance with

Jupiter forming the outer limit for inner main-belt asteroids, known as one of

the Kirkwood gaps (Xu & Lai 2017). While the Kirkwood gaps are considered

unstable, as the repeated gravitational perturbation by Jupiter excites bodies
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away from the resonance, the mutual interactions in the second-order chain in GJ

9827 are generally considered long-term stable (Prieto-Arranz et al. 2018, see Sec.

6.3).

2.3.2 Kepler-223

Figure 2.5: Same as Fig. 2.4, but for Kepler-223

As of January 1st, 2024, Kepler-223 is the system with the second-lowest COI

value. In April 2023 the system was surpassed by the discovery of the 6-planet

TOI-1136 (MacDougall et al. 2023). In this work, we have chosen to highlight

Kepler-223 due to an abundance of literature probing its dynamics. This system,

identified with the Kepler/K2 mission, is unique in that it was the first identified

4-planet first-order resonant chain. Originally thought to contain a pair of co-

orbital planets, Kepler-223 contains a tight 8:6:4:3 resonant chain between all

planets within the system.



Chapter 3

Simulating Exoplanet Populations

With the definition of the commensurability offset index (COI) as presented

in Eqn. 2.2, we seek to apply this dynamical summary statistic to a simulated

population of multiplanet systems. Here we introduce two models for simulating

the multiplanet sample—a simple best-fit model for independent draws of orbital

period in N = 3 systems (“Model A”) and an adapted code from the Exoplanet

Population Observation Simulator (EPOS, Mulders et al. 2018) which accounts for

observed trends in the orbital spacings between adjacent planets.

These methods differ in how they simulate orbital periods but are similar

in how they generate planet radius and mass. For both methods we enforce

physicality through N -body stability analysis, described in Sec. 3.4, in which we

eliminate unstable systems from the samples. With these models, we run a Monte

Carlo simulation to construct a mock-observed catalog for each case. We compare

these to the observed sample in Chapter 4.

3.1 Model A

As demonstrated in Fig. 1.5, surveys of the observed multiplanet population

have provided a large sample of N = 3 planet systems, particularly dominated

by high-cadence observations by the Kepler space telescope (Borucki et al. 2010;

Fabrycky et al. 2014). Examining the orbital periods of the N > 2 planet systems,
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we fit a lognormal parameterization to the period distributions for the innermost

three planets of each system, shown in Fig. 3.1. The mean of each distribution

increases monotonically as one would expect for three populations of planets with

systematically increasing orbital periods, with values of 6.24 days for the inner-

most planet (planet b), 11.09 days for the second (planet c), and 17.42 days for the

third (planet d). This shape and trend arises from the observational bias against

planets with longer periods inherent to transit surveys, implicitly accounting for

this selection effect in constructing each model system. This model fits to the

orbital period distributions of the inner three planets for all systems containing

N > 2 planets as of January 1st, 2024. There are 218 systems confirmed as such.
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Figure 3.1: Log-normal distributions of all the N = 3 planetary systems, constituting
the “square-one” model for orbital period.
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Running a two-sided KS test (Sec. 1.4.1) between the observed period his-

tograms and best-fit lognormal distributions (shown in Fig. 3.1) yields p-values of

0.83, 0.92, and 0.32 for the inner, middle, and outer cases, respectfully. This test

allows us to determine the likelihood that a given empirical distribution (in this

case, each observed split orbital period distribution) is randomly drawn from some

given underlying distribution (here, the lognormal fits). Specifically, it determines

the likelihood that the maximum difference between the two distributions occurred

randomly, with a result of p > 0.05 considered significant for the empirical dis-

tribution being drawn from the underlying. As such, the fit distributions are all

considered statistically significant, motivating the lognormal fits. We discuss the

KS test as a summary statistic more in Sec. 1.4.1, and its utility in astrophysical

population science cannot be overstated.

With this model, we construct a large number (n = 10, 000) mock N = 3

planetary systems from independent draws from each distribution, enforcing that

the innermost planet period must be drawn from the innermost distribution and

that each successive planet is drawn from its respective distribution. This gives

us a base catalog of orbital periods over which we can construct a radius and mass

distribution, which we outline in Sec. 3.3. As these distributions are empirically

determined from the observed population, for simplicity we do not implement any

procedure for probing detectability and do not simulate characteristics for the host

stars of these systems. Each system is simulated to be considered observable, with

each planet at an inclination of 90◦ and eccentricity of 0.

With the only dependence between the three lognormal distributions being

that each successive planet must have an orbital period larger than its inner com-

panion(s), the main characteristic of this model is that it is completely agnostic

to planet-planet interactions and other mechanisms that can gravitationally influ-
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Figure 1. from The Exoplanet Population Observation Simulator. II. Population Synthesis in the Era of Kepler
null 2019 APJ 887 157 doi:10.3847/1538-4357/ab5187
https://dx.doi.org/10.3847/1538-4357/ab5187
© 2019. The American Astronomical Society. All rights reserved.

Figure 3.2: From Mulders et al. (2018). Population synthesis can both serve to in-
fer future populations with forward modeling and explain existing populations through
inverse modeling, which can account for the completeness of a given exoplanet survey.
This allows us to parametrically compare models for planet formation to the observed
sample of exoplanets, which will be affected by observational biases and survey incom-
pleteness.

ence system architectures. With the removal of unstable systems through N -body

analysis described in Sec. 3.4, this model primarily serves as a benchmark to com-

pare to other populations, both modeled and observed, the strength and influence

of such resonant interactions in constructing the known population.

3.2 EPOS

The Exoplanet Population Observation Simulator (EPOS) is an incredibly ver-

satile exoplanet population synthesis code in its ability to apply selection and

incompleteness effects and provide parameter estimations to a wide variety of ex-

oplanet surveys, including the transit and radial velocity search methods. For

this work, we primarily use its functionality to mimic the Kepler Data Release
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25 (DR25) population, the final Kepler data release which to date dominates the

transiting multiplanet population (see Fig. 1.1).

EPOS (Mulders et al. 2018, 2019) was initially developed to inform and forward-

model the Kepler/K2 sample. For our purposes, it is useful to leverage as a

more sophisticated method for simulating populations as it can generate model

exoplanet catalogs based on empirically determined planetary occurrence rates

which take into account survey incompleteness factors and detection biases. Fig.

3.2 shows the versatility in population synthesis methods that EPOS affords. For

this work, we employ fits to the Kepler/K2 DR25 population as the base catalog

from which we draw our underlying population.

In contrast to the independent draws for each consecutive orbital period as

used in Model A, this model assumes a dependence between the orbital periods

for outer planets and that of the innermost planet, with each planet’s position

drawn from a lognormal distribution scaled by orbital period relative to its inner

adjacent neighbor. For outer planets, this is accomplished by the dimensionless

spacing parameter D (Malhotra 2015). Where Pk = Pk

Pk−1
is the pairwise period

ratio for planet k relative to its inner companion, Dk = 2
P2/3
k −1

P2/3
k +1

. We provide

the logarithm of the Dk distribution for our observed transiting sample in Fig.

3.3. Peaks near resonant ratios are clearly seen, particularly near the 2:1 and 3:2

resonances, which have D values of -0.34 and -0.57, respectively.

First, the orbital period of innermost “seed” (k = 0) planet is drawn from a

broken power-law distribution given by

fP (Pk=1) =

 (Pk=0/Pbreak)
aP , Pk=0 < Pbreak

(Pk=0/Pbreak)
bP ,

(3.1)

where aP ≈ 1.5, bP ≈ 0, and Pbreak ≈ 10 days are assumed prior values, reflecting
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the flat occurrence rates for subneptune-sized planets observed above Pbreak (see

Mulders et al. 2018; Howard et al. 2012; Mulders et al. 2015). Exact values for

aP , bP , and Pbreak are determined with a Markov Chain Monte Carlo parameter

estimation implemented in EPOS (see Sec. 1.4.2) for each run of the Monte Carlo

simulation. The MCMC run is used to minimize the distance between the observed

and simulated distributions for varying values of these parameters and others

discussed below. For these on-the-fly parameter estimations, we run 100 steps

with 20 walkers. These are sufficient to produce a plausible model population with

good computational efficiency (see Mulders et al. 2018, and EPOS documentation).

With the innermost orbital period generated with Eqn. 3.1, the period of each

successive outer planet is drawn from the lognormal distribution

f(Pk+1|Pk) =
1√
2πσ

e
(logDk−D)2

2σ2 (3.2)

where the lognormal fit parameters σ and D are approximately 0.2 and -0.4 re-

spectfully, given by Malhotra (2015). This allows for each planet’s orbital spacing

to be drawn recursively and interdependently, while building up a system’s suc-

cessive orbital periods through random draws from Eqn. 3.2.

To generate an observable population to mimic the Kepler DR25 catalog, a

power-law dropoff in planets per star is fit to the observed occurrence rates using

an MCMC parameter search (Sec. 1.4.2). The effect of this is shown in Fig. 3.4. As

multi-planet mode for EPOS is designed to simulate the Kepler DR25 population,

each simulation run generates approximately 250 observable N > 2 systems. For

the purposes of this work, we desire a larger population than observed to be

generated and to have this population sample a variety of results from the MCMC

parameter estimations, while reducing computational expense. As such, we run
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Figure 3.3: Logarithm ofD histogram for the observedN > 2 population, with vertical
lines at low-order commensurabilities. We note peaks at D = −0.34 and D = −0.57,
the 2:1 and 3:2 resonances, respectfully.

the simulation several times to draw a population of approximately 1500 systems.

This is a sufficient size to compare statistically against a much smaller observed

population, which we show in Chapter 4.

3.3 Radius and Mass Determination

Both models adopt a broken power law parameterization for the planet radius

distribution,

fR(Rk) =

 (Rk/Rbreak)
aR , Rk < Rbreak

(Rk/Rbreak)
bR ,

(3.3)

with values from Mulders et al. (2018) of aR ≈ 0, bR ≈ −4, and Rbreak ≈ 3M⊕.

For the Model A simulation we set the parameters at these fit values, but for

the EPOS population, as for the orbital period distribution, these parameters are

refined for each population using through an MCMC parameter estimation (see

Sec. 1.4.2).
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Figure 3.4: Planets per star between EPOS and Kepler sample.

We draw from Eqn. 3.3 to determine a planet radius value for each planet

in both models. Model A draws independently from f(Rk) for each planet in

each system, while the EPOS model assumes a single value for planet radius for

all planets in a system. Mulders et al. (2018) makes this assumption noting the

tendency for Kepler multiplanet systems to have similar masses across their com-

ponent planets. Such systems, as is visible in Fig. 1.5, do not tend to contain

Jupiter mass planets in succession with relatively lower mass planets, so simu-

lating a consistent mass across N planets both serves as a physically-motivated

approximation to simplify the generation of the synthetic population.

With radius values generated for the Model A and EPOS synthetic catalogs,

we use the forecaster python code from Chen & Kipping (2017) to generate

probabilistic masses for each simulated planet. This code samples from a broken

power law mass-radius relation shown in Fig. 3.5. To aid in computational expense

and more precisely factor in the variance off of a direct mass-radius relationship,

this code breaks up the broken power law into a configurable number of grid
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Figure 3.5: Continuous power law mass-radius relation plot from Chen & Kipping
(2017), including 68% and 95% confidence intervals for dispersion off the direct relation.

spaces, in this case we use Nspaces = 1000. To “forecast” the mass value for

a given radius, the code determines the possible mass values given in Fig. 3.5,

including the associated spread of the broken power law, and samples accordingly.

For a sufficiently large population and a large value for Nspaces this results in a

well-populated mass-radius distribution for both model cases, shown in Fig. 3.6.

3.4 Stability Analysis and Dynamical Filtering

Unlike the orbital configurations of the observed population, there is no guar-

antee of short-term stability for our simulated populations. Unstable configura-

tions may have planets undergo ejection or migration on rapid timescales that are

not seen in the observed sample. This is a particular concern for Model A, where
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Figure 3.6: Forecasted mass-radius distribution using triple broken power law from
Chen & Kipping (2017) for the two model cases, including the observed population.

orbital periods for the N = 3 planet case are drawn with no dependence on the

location of other planets in the system. Fortunately, there are several numerical

stability indicators that are easily implemented in N -body codes, which we can

use to remove dynamically unstable systems from our simulated population.

Simulations in this paper made use of the REBOUND N -body code (Rein & Liu

2012), which includes a fast symplectic integration functionality for calculating a

widely-used stability criterion in exoplanet science–the Mean Exponential Growth

factor for Nearby Orbits (MEGNO). This metric, represented by ⟨Y ⟩, is essentially

a summary statistic gauging the influence of chaotic interactions in perturbing

successive orbits over an integration. This requires an N -body integration for each

system in our model populations, so to maintain computational expense we set

the integration time at 10×Pmax. This gives at least 10 orbits for any given planet

in a system simulated by our models. Systems with inherently unstable orbital

configurations can then be filtered out of the model populations. Simulations

of systems with the ejection of a planet are halted and automatically removed
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Figure 3.7: MEGNO versus COI for the Model A and EPOS populations, where the
stable population is limited to systems with ⟨Y ⟩ < 3. Note that the majority of systems
with low COI (< 0.05) are stable whereas at higher COI there is a small, but significant,
fraction that are unstable.

from the sample. We discuss the effect of this on the simulated populations in

Sec. 4.1. The simulations were integrated using WHFast, a symplectic Wisdom-

Holman integrator (Rein & Tamayo 2015; Wisdom & Holman 1991). Variational

equations were used to calculate trajectories of nearby orbits (Rein & Tamayo

2016). We run the N -body code for each system in the populations, rejecting

systems with ⟨Y ⟩ > 3 as unstable. We provide the scatter plot for MEGNO and

COI for each system in Fig. 3.7, which include all simulated stable and unstable

systems.



Chapter 4

Simulation Results

Here we analyze the results of a Monte Carlo simulation for the popula-

tions described in Chapter 3 and compare these simulated populations to the

observed sample of transiting multiplanet systems. For each model, we gen-

erate nModel A = 10000 and nEPOS = 1458 model systems to compare against

nobserved = 218 known/candidate systems. We find these simulated samples suffi-

ciently well-populated enough to make meaningful statistical comparison between

them and the observed sample.

4.1 Orbital Spacings
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Figure 4.1: logD distributions for the Model A, EPOS, and observed populations.
Here we show the distributions before and after removing unstable systems from the
Model A and EPOS populations, and include the low-order commensurabilities used in
calculating Eqn. 2.2 as vertical lines.
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We begin the evaluation of the simulated samples with a discussion of the

stability analysis described in Sec. 3.4, which is primarily affected by the orbital

spacings between planets in a system. The effect of this procedure ultimately

restricts, in principle, the models to physically feasible values. That is, it is

unrealistic for two planets of comparable to be located very close to each other

as their mutual gravitational interactions would render such a configuration as

unstable. This is different from the gravitational processes leading to resonance,

however, (see Chapter 2) as this orbital evolution tends to take place during the

later stages of planet formation (see Armitage 2010). Such unstable configurations

are very unlikely to make it past these stages, and as such we remove the systems

demonstrating chaotic instability from our model populations.

Recalling the dimensionless parameter D from Eqn. 3.2, adjacent planet pairs

that are closely situated in orbital period will have a low value of D while pairs

situated further apart will have a higher value. In Fig. 4.1 and Fig. 4.2 we plot

the distribution of the logarithm of D for the Model A and EPOS populations

both before and after the removal of unstable ⟨Y ⟩ > 3 systems. In Fig. 4.3

we provide the corresponding cumulative distribution functions. We note that

Model A shows a particularly large change in its logD distribution before and

after enforcing stability, as many systems are generated with planet pairs in close

orbital configurations that are generally unstable on short timescales. The EPOS

population also shows some tendency for instability in the same regime, though

Fig. 4.1 shows the distribution thinning out towards a lower limit of logD = −1

more rapidly than Model A. This is consistent with the simulation procedure

discussed in Sec. 3.2, where D is determined through successive lognormal draws

in a system, and covers the same domain as the observed distribution. In general,

the EPOS method produces a much more stable population than Model A.
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We also note the tendency for resonant configurations to stand out in the

logD distributions in the form of peaks along low-order resonant ratios, similar to

Fig. 1.6. This is particularly seen in Fig. 4.1 for the observed systems, compared

to the relative smoothness of the model distributions. While the dimensionless

spacing parameter D gives information on the relative orbital spacings between

planet pairs, it does not give any information on the proximity of these pairs to

any given period ratio value, such as low-order commensurabilities. It also does

not give a description of orbital spacings across an entire system, with planetary

having independent orbital spacing values in line with the simulations in Sec. 3.2.

In effect, to summarize the system-wide tendency of a system to converge near

resonant ratios, COI “collapses down” the offsets in D-space for these values of

interest as well. We discuss the COI distribution for the observed and model

samples in the following section.
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Figure 4.2: logD distribution for simulated stable and observed populations.
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Figure 4.3: log D cumulative distribution for Model A and EPOS, both for the whole
simulated populations and those limited by ⟨Y ⟩ < 3, which are considered stable (see
Sec. 3.4).
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4.2 System Abundance at Low-COI

In Fig. 4.4, we plot the probability density function and cumulative distribution

function of the calculated COI values for the Model A, EPOS, and observed

populations. Note that the distribution for the observed population is also shown

in Fig. 2.3, though not as a normalized probability distribution. Here, we are

particularly interested in comparing the nature of the distributions at low values

of COI, between 10−3 and 10−1.
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Figure 4.4: COI distributions for Model A, EPOS, and the observed population.
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We note an overabundance of systems within this low-COI regime in the ob-

served population compared to EPOS and Model A, shown in Fig. 4.4. This is

particularly notable for the Model A population, which peaks around COI = 10−1,

compared to the peak around COI = 2× 10−2 for the observed distribution. This

overabundance does not appear to be an artifact of normalization on a logarithmic

horizontal axis, and appears with linear binning as well.

Figure 4.5: Probability density estimation procedure for probing the overabundance
in the observed COI distribution compared to Model A (see text).

To quantify the difference between the observed and Model A distributions we

run a density estimation from the cumulative distribution function of the observed

sample. We desire a smooth analytic form for the observed distribution of COI in

the form of a lognormal, which can be fit to the cumulative distribution and then

transformed into a probability density function. This procedure is shown in Fig.

4.5. First, we fit a lognormal cumulative distribution function to the cumulative

distribution of COI for the observed distribution. We fit this to the cumulative

distribution as, unlike the probability density function, it will not change with

arbitrarily large binning (here we use Nbins = 1000). We then transform the

cumulative distribution into a probability density function to serve as a smooth

parametric form for the observed COI distribution. As the Model A distribution

is well-populated and does not appear to follow a lognormal trend, we choose not
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to fit a smooth parametric form to its probability distributions. This enables us

to take the difference between a smooth observed distribution and the Model A

normalized histogram. We plot the positive values of the difference as the “excess”

between the two distributions in Fig. 4.5, and note that this excess distribution has

a population mean µ = 0.0211 and a variance σ2 = 0.0002, implying a standard

deviation of σ = 0.0141.

The significance of this overabundance lies in the assumption made a priori

that the Model A population is completely agnostic to the arising of resonant

architectures within a system as an end-product of system formation. It only

seeks to mimic the population in terms of individual orbital period values rather

than in terms of relative orbital spacings. As such, it may serve as a benchmark

for a physically-minded population independent of effects leading to convergence

upon resonant configurations. This may indicate that the tendency toward com-

mensurability noted in Sec. 2.1 observed on the scale of the solar system and

some exoplanet systems plays a role in sculpting the architectures of multiplanet

systems well beyond the regime of strictly resonant systems.

4.3 Occurrence Rates of Commensurabilities

We provide the relative occurrence rates of pairs in proximity to the low-

order commensurabilities considered herein in Fig. 4.6 for the Model A, EPOS,

and observed populations. We do not establish a cutoff for the proximity of a

given period ratio to a certain commensurability in this visualization. Here the

similarity between the EPOS and the observed Kepler DR25 population in terms

of this metric is notable, with similar occurrence rates of the many resonances

demonstrated between the model and observations.



4. Simulation Results 41

Figure 4.6: Relative occurrence of low-order commensurabilities within the Model A,
EPOS, and observed populations.

We note that Model A in particular generates more pairs close to the 4:1

and 5:4 commensurabilities, and generally does not produce a population with

similar occurrence rates as EPOS. This is due to how the area in period-ratio

space considered “in proximity” to these resonances is large compared to other

commensurabilties. In Fig. 4.7 we demonstrate this phenomenon across the two

model populations. As the Model A population is agnostic to the presence of res-

onant configurations influencing the period ratio distribution of each planet pair

in a system, the distribution in period ratio space appears more-or-less uniform

compared to the observed population (Fig. 2.2) and the accompanying EPOS

population. This is particularly notable for the 4:1 resonance, but a much larger

fraction lies in proximity to the 5:4 resonance for Model A compared to the ob-

served population as well. While the EPOS distribution of period ratios is less

populated than Model A, there still appears to be a slight bias toward the regime

of low-order commensurabilities–though not directly upon them as seen in the

observed distribution–and a more subtle overabundance of pairs closest to the

4:1 chain compared to Model A. This is likely due to the lognormal sampling of

D, enforcing compactness upon adjacent pairs in a multiplanet chain while still

over-representing the 4:1 regime due to its large area in period ratio space.
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Figure 4.7: The same as Fig. 2.2, but for the Model A and EPOS populations. Lowest
pairwise period ratios in each system, used in the calculation of COI for each system.



Chapter 5

Discussion

Here we discuss the significance of various aspects of the model populations

described in Chapter 3 and discuss the relevance of our modeling to other related

astrophysical populations. To this end, we compare the considered populations to

the sample of angular substructures in planet-forming disks from the Disk Sub-

structures at High Angular Resolution Project (DSHARP) catalog observed by

the Atacama Large Millimeter/submillimeter Array (ALMA) presented in Huang

et al. (2018), as well as various groupings of solar system objects in varying prox-

imity to resonant configurations. We also discuss the possibility of using COI to

help search for outer bodies in confirmed transiting N = 2 planet systems.

For one, we briefly discuss the prior assumption made in the EPOS popula-

tion that successive planets should have similar planet masses, with the initial

innermost planet mass determined by sampling a broken power law which is flat

within 3M⊕ (see Eqn. 3.3; Mulders et al. 2018, 2019), which may explain the

weak period-radius relation in Fig. 1.5. This is referred to as the “peas in a pod”

phenomenon and was first identified in Weiss et al. (2018). There is debate as

to whether this pattern is intrinsic to the observed population or a bias of the

decreased sensitivity to detect larger planets at larger orbital separations with

the detection limits inherent to the Kepler survey (Zhu 2020). However, work by

Weiss & Petigura (2020) suggests that this pattern is in fact physical and that
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the presence of outer planets would emerge in survey observations with Kepler’s

sensitivity. With the “peas in a pod” model assumed in this work, we plot the

period-radius relation for the EPOS population in Fig. 5.1. We note the similar-

ity between the model and the same plot for the observed in Fig. 1.5, including

the slight upward tendency in the distribution indicating a weak period-radius

relation.

In the following subsections, we discuss the various applications of our analysis

to other relevant multiplanet samples, including the ALMA angular substructures

catalog from the DSHARP survey presented by Huang et al. (2018) and various

groupings of solar system planets. We also speculate as to the possibility of using

COI as a predictive summary statistic to find outer unseen bodies in exoplanet

systems containing N = 2 confirmed planets.

5.1 Comparison to ALMAAngular Substructures

The DSHARP angular substructures catalog presented by Huang et al. (2018)

is a catalog of 18 protoplanetary disks around nearby young stars observed by

ALMA, a large-scale microwave interferometer located in Northern Chile. Specif-

ically, this catalog probed disks with a spatial resolution of approximately 5 au

for angular features indicating the presence of planet formation in the disks. As-

suming these substructures correspond to a planetary body forming at the cor-

responding orbital distance, such observations would be caused by the nascent

protoplanet “clearing the neighborhood” along the path of its orbit.

Young planetary systems in particular are an interesting sub-sample in which

to probe resonant configurations. Current models of planet formation (see Sec. 2)

suggest that planets are drawn toward resonant configurations during the early
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Figure 5.1: Remake of Fig. 1.5 with the simulated EPOS population.
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Figure 5.2: Cumulative distribution functions for model and observed multiplanet
populations, including the DSHARP angular substructures sample presented in Huang
et al. (2018).

disk stage, with torques from other forming planets and the disk itself causing

protoplanets to converge upon resonance (see Armitage 2010). With the dissi-

pation of protoplanetary disks, these planets may diverge from resonance with

continued torques from companion planets and other gravitational torques. This

sample, though, should theoretically correspond to a sample displaying a strong

tendency toward resonant configurations.

In constructing a sample to probe the COI distribution of these sources, we

exclude DoAr 33, Elias 27, SR 4, Sz 114, WaOph 6, WSB 52 from the angular

substructure sample as these systems only contain two detected substructures,

and our analysis requires a minimum of three “bodies” for a measured COI value.

For the systems containing more than two detected substructures, we determine

the COI by directly taking the ratio of the orbital periods and summing the offsets

to the nearest commensurabilities according to Eqn. 2.2. We note that the catalog

presents the orbital distance to the angular substructure as the semimajor axis,
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a direct observable given a known distance to the star and inclination angle. As

such, we directly take the period ratios Pi =
(

ai
ai−1

)3/2

in accordance with Kepler’s

third law.

In Fig. 5.2 we provide the cumulative distribution functions for the substruc-

tures sample compared to the Model A, EPOS and observed transiting popula-

tions. While the sample size of the substructures catalog is small, their COI values

exclusively cluster within the regions close to strict resonance within the transiting

sample. This may be expected due to the tendency for planets to converge upon

resonant configurations during the disk stage of planet formation. We cannot

conclusively claim this, however, as we found many of these pairs in proximity to

second-order resonances, which may be unstable in certain cases during the disk

stage and beyond. In Sec. 5.3 we compare this distribution to various groupings

of solar system objects.

5.2 Searching for outer unseen planets with COI

For systems with N = 2 planets in particular, this procedure motivates the

prospect of finding possibly undetected outer planets by searching the orbital

period space around resonant ratios. More than 500 N = 2 In Fig. 5.3 we plot the

histogram of the individual pairwise offsets factoring into the COI calculation for

each observed system with N = 3 planets. These distributions have mean values

of 0.028 and 0.25 and variances of 0.0007 and 0.46, respectively.

We plot the distribution for N = 3 planet systems as the strictest pairwise

offset in the COI calculation is often contributed by the closest-in pair. For

example, if a pair in an N = 2 planet system is found to have an offset within the

lower offset distribution, between COI = 10−3 and COI = 10−1, this may indicate
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Figure 5.3: Distribution of individual pairwise offsets factoring into the COI for ob-
served transiting systems with N = 3 planets. We provide the mean and variance of
the distributions in Sec. 5.2.

the presence of a planet in the range of the upper offset distribution, with the

orbital period solved for in the COI calculation (Eqn. 2.2). The relative occurrence

rates of commensurabilities for the EPOS and Kepler populations may serve as

priors in determining the particular resonance to which a pair is in proximity.

Essentially, the relative abundances of commensurabilities in Fig. 4.6 may serve

as a likely list of resonances for an outer planet to occupy, with the spread of

the upper offset distribution in Fig. 5.3 serving as a tolerance range in which the

position of outer bodies may be constrained.

This is particularly relevant to systems probed with low observing cadence

where outer planets with lower detection probability (Eqn. 1.3) may not have

occurred during survey observations. Such work could accompany transit timing

variations (see Ballard et al. 2011) to constrain the location of such unseen planets.

There are more than 500 transiting N = 2 planet systems to which this technique

could apply.
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5.3 Comparison to Solar System
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Figure 5.4: COI histogram for the Huang et al. (2018) substructures sample, compared
to the calculated values for the solar system. We include the calculated COI value for
the whole solar system as well as only the inner rocky planets and outer gas giants, and
the Galilean moons of Jupiter. The details of these calculations are given in Table 1.

Here we present the calculation of COI for various groupings of the solar system

planets, including the Galilean moons, and compare them to the distribution

of COI for the angular substructures catalog from Huang et al. (2018) and to

the COI distribution for transiting N > 2 planet systems. In Fig. 5.4 we plot

the histogram of the COI distribution for the angular substructures catalog and

include markers for the COI values of various groupings of solar system planets.

We group the planets into the rocky planets and gas giants, taking the COI values

for these subsets and the entire solar system. We also include the calculation for

the Galilean moons presented in Chapter 2. We provide the calculated values for

these groupings in Table 1, which includes the specific bodies factoring into each

calculation.
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Table 1: Calculated COI values for various solar system groupings, including the
Galilean moons of Jupiter. We also include the specific orbital pairs factoring into each
calculation.

COI Bodies Included
All 0.0232 Earth:Venus and Saturn:Jupiter
Rocky Only 0.0372 Venus:Mercury and Earth:Venus
Gas Only 0.0230 Saturn:Jupiter and Neptune:Uranus
Galilean Moons 0.0111 Europa:Io and Ganymede:Europa

It is interesting to note that these solar system scale COI calculations fall

well within the range of values for the Huang et al. (2018) catalog. For one, the

Galilean moons and inner planets both belong to similar classes of systems–that

is rocky systems displaying the “peas in a pod” phenomenon–though the inner

planets lie in a range of orbital periods too high to be effectively detected by

the transit method (Eqn. 1.3) and too low to be detected through interferometric

observations (that is, during their formation). Most of relevance, therefore, is the

gas giants. These display the most similarity to the substructures sample and are

most analogous in orbital separation and planet type.

These calculated values also lie on the lower end of the COI distribution in Fig.

2.3 and Fig. 4.4 for the observed transiting sample. For this sample the Galilean

moons and rocky planets are the most relevant, so it is notable that the COI

calculations for these groupings fall well within the range of the larger transiting

sample. While the rocky planets would not be detected as an N = 3 planet

chain using the transit method, the similar COI values between the populations

may reflect the convergence on resonant configurations influencing the formation

of the solar system, which some dynamical modeling has historically suggested

(Goldreich 1965; Patterson 1987).



Chapter 6

Conclusions and Future Work

In this thesis we present a new metric, the commensurability offset index

(COI), to determine the proximity of multiplanet exoplanet systems to containing

a chain of mean motion resonances. We apply this metric to the observed tran-

siting sample, dominated by systems detected by the Kepler space telescope, and

compare this population to two model samples constructed using Monte Carlo

methods. These models include a sample which generates orbital periods inde-

pendently for each successive body in N = 3 planet systems (“Model A”) and

a sample which builds up successive orbits using a dimensionless orbital spacing

parameter (“EPOS”). We simulate planet radii and masses for the catalogs con-

structed using these models resembling the “peas in a pod” phenomenon noted in

Weiss et al. (2018) and Weiss & Petigura (2020). We then enforce stability for the

model catalogs using N -body analysis. With these models informed by empirical

trends we are able to mimic the transiting N > 2 planet sample using a Monte

Carlo simulation.

We apply the COI metric to the model populations and find an overabundance

of systems between the observed distribution and Model A, peaking at a value of

COI = 0.0211. Model A is constructed to be agnostic to the gravitational effects

causing orbital evolution into resonant configurations, so this overabundance at

low COI for the observed sample evidences that proximity to orbital resonances
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may be overrepresented in the observed sample. As such, these resonant effects

may play a significant role in the orbital evolution of systems within the sample.

We discuss the possibility of using this metric to search for outer undetected

planets in N = 2 planet systems, which are particularly numerous in the tran-

siting catalog numbering more than 500. We also apply COI to relevant non-

transiting populations, including the ALMA DSHARP catalog of angular sub-

structures in protoplanetary disks from Huang et al. (2018) and several groupings

of solar system objects, including the rocky and gas planets and the Galilean

moons of Jupiter. Interestingly, the distribution of COI values for the angular

substructures occupies a similar range to the solar system objects, with the an-

gular substructures sample having COI < 0.085 and the solar system groupings

having COI < 0.04. These occupy the lower end of the COI distributions for the

transiting sample, which is particularly interesting for the angular substructures

sample as resonances are expected to form during the planet formation stages

probed by the DSHARP survey.

This is an exciting time for exoplanet population science as this field will con-

tinue to detect a larger sample through a growing variety of means, both with

and beyond the transit method. As TESS matures, the population of confirmed

systems will grow as it continues its observations across the celestial sphere. The

mission will further explore the short-period sample limited to below 27.4 days,

discovering new systems across the sky, and follow-up observations will extend

these observations to build up a more robust multiplanet sample. Follow-up ob-

servation is crucial to this work as it serves both to help confirm the thousands of

candidate planets through detecting additional transits, as well as to probe these

candidate systems for additional outer planets. Small facilities like the Van Vleck

Observatory here at Wesleyan are an important part of this work to extend the
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observing cadence of these systems and uncover more multiplanet systems. Such

work may be assisted by applying the COI metric for candidate N = 2 planet

systems to constrain the orbital distances of possible outer planets.

There is also the GAIA astrometric population on the horizon, which will

detect exoplanets through precise measurements of their host star as it orbits

around their common center of gravity. As such, this sample will be more sensitive

to distant orbits and is estimated to detect 21000 ±6000 new exoplanets according

to estimates from Perryman et al. (2014). Such a catalog, with multiple times more

planets than currently confirmed, can probe resonances at much higher orbital

separations, including analogs of outer solar system planets.

Such work on angular substructures is ongoing with the ALMA survey to

Resolve exoKuiper belt Substructures (ARKS), an ALMA Large Program that

will probe substructures in Kuiper belt analogs within 30 − 300 au of their host

stars. Radial and vertical substructures caused by the presence of planets with

masses ranging from Jupiter mass and Pluto analogs will be detectable within

these disks. The survey will probe the disks around 18 nearby stars, and it will

be interesting to compare the COI distribution from ARKS to that calculated for

DSHARP in this work, as well as the large future population from GAIA which

probes a similar range of orbital distances.

With these future populations and an ongoing effort towards follow-up transit

observations, it remains an open question to see if a much larger sample of non-

transiting exoplanets would peak at the same COI value as the angular substruc-

tures catalog, and if that range would coincide with the ever-increasing transit

catalog. Approaching from a different angle, it would be interesting for theo-

retical modeling to analytically reproduce the overabundance between a model

assuming independent orbital periods (like Model A) and one with probabilistic
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orbital spacings (like the observed sample, and EPOS) from first principles.

Population science serves to remind us of the minuscule window we possess on

a large and changing universe. It allows us to take our momentary observations

and contextualize them into a larger paradigm. But beyond the science, this

is something we can feel if we stop and look. When gazing at the sky, day or

night, think of all the things that you don’t see. Think of all the bodies forming

and dying, of all the planets transiting undetected, of all the worlds yet unseen

by human inference. And think of the transient events that we do fortuitously

detect, such as the total solar eclipse that passed a week before this thesis was

due. How lucky we are to live in such a universe as this.



Bibliography

Almeida, A., et al. 2023, ApJS, 267, 44

Andreon, S., & Weaver, B. 2015, Bayesian Methods for the Physical Sciences.

Learning from Examples in Astronomy and Physics., Vol. 4

Armitage, P. J. 2010, Astrophysics of Planet Formation

Babu, G. J., & Feigelson, E. D. 1996, Astrostatistics

Ballard, S., et al. 2011, ApJ, 743, 200

Borucki, W. J. 2016, Reports on Progress in Physics, 79, 036901

Borucki, W. J., et al. 2010, Science, 327, 977

Chen, J., & Kipping, D. 2017, ApJ, 834, 17

Dai, F., et al. 2023, AJ, 165, 33

Fabrycky, D. C., et al. 2014, ApJ, 790, 146

Ford, E. B. 2006, ApJ, 642, 505

Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306

Fulton, B. J., et al. 2017, AJ, 154, 109

Gaia Collaboration et al. 2018, A&A, 616, A1

Galilei, G. 1610, Sidereus Nuncius (Apud Thomam Baglionum)

Ghosh, T., & Chatterjee, S. 2023, ApJ, 943, 8

55



Gillon, M., et al. 2017, Nature, 542, 456

Goldreich, P. 1965, MNRAS, 130, 159

Howard, A. W., et al. 2012, ApJS, 201, 15

Howell, S. B., et al. 2014, PASP, 126, 398

Huang, J., et al. 2018, ApJ, 869, L42

James, C. W. 2023, PASA, 40, e057

Johnson, J. A., et al. 2017, AJ, 154, 108

Lissauer, J. J., Rowe, J. F., Jontof-Hutter, D., Fabrycky, D. C., Ford,

E. B., Ragozzine, D., Steffen, J. H., & Nizam, K. M. 2023, arXiv e-prints,

arXiv:2311.00238

MacDougall, M. G., et al. 2023, AJ, 166, 33

Malhotra, R. 2015, ApJ, 808, 71

Mallonn, M., Poppenhaeger, K., Granzer, T., Weber, M., & Strassmeier, K. G.

2022, A&A, 657, A102

Mayor, M., & Queloz, D. 1995, Nature, 378, 355

McGregor, K., & Lorimer, D. R. 2024, ApJ, 961, 10

Mills, S. M., Fabrycky, D. C., Migaszewski, C., Ford, E. B., Petigura, E., &

Isaacson, H. 2016, Nature, 533, 509

Mulders, G. D., Mordasini, C., Pascucci, I., Ciesla, F. J., Emsenhuber, A., &

Apai, D. 2019, ApJ, 887, 157

56



Mulders, G. D., Pascucci, I., & Apai, D. 2015, ApJ, 814, 130

Mulders, G. D., Pascucci, I., Apai, D., & Ciesla, F. J. 2018, AJ, 156, 24

Murray, C. D., & Dermott, S. F. 2000, Solar System Dynamics

Niraula, P., et al. 2017, AJ, 154, 266

Patterson, C. W. 1987, Icarus, 70, 319

Pereira, C. L., et al. 2023, A&A, 673, L4

Perryman, M., Hartman, J., Bakos, G. Á., & Lindegren, L. 2014, ApJ, 797, 14
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