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Do there exist many worlds, or is there but a single world? This is one

of the most noble and exalted questions in the study of Nature.

—Albertus Magnus
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Chapter 1

Introduction

The scientific study of exoplanets—planets orbiting stars other than the Sun—

is a relatively young field; however, the philosophical concept of there existing

other planets in the Universe is actually thousands of years old. As early as

the third century BCE, before the development of a rigorous heliocentric model,

Epicurus postulated the idea of there being “infinite worlds both like and unlike

this world of ours” (quoted in Bailey 1926). Albertus Magnus similarly pondered

the existence of other worlds in the thirteenth century (see epigraph; quoted in

Bennett et al. 2009). As humanity’s knowledge of the cosmos continued to develop

and refine, so too did the treatment of exoplanets. Giordano Bruno, a supporter of

heliocentrism, declared “There are countless suns and countless earths all rotating

about their suns in exactly the same way as the seven planets of our system,”

explicitly postulating the existence of planets about other stars (Bruno 1584).

During the nineteenth and twentieth centuries, several “detections” of exoplan-

ets were published, and later retracted. It was only about two decades ago in 1992

that the first widely-accepted discovery of an exoplanet occurred. By analyzing

variations in the rotational period of the radio pulsar PSR1257+12, Wolszczan

and Frail deduced the presence to two orbiting, Earth-mass bodies (Wolszczan

& Frail 1992). Three years later, in 1995, Mayor and Queloz discovered the first

exoplanet orbiting a Sun-like star, 51 Peg (Mayor & Queloz 1995). This latter dis-
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covery begat an entirely new field of astronomy, involving comprehensive ground-

and space-based surveys for exoplanets.

1.1 Detection/Characterization of exoplanets

Several methods have been successfully used to detect and characterize exo-

planets, each with its advantages and disadvantages (cf. Seager 2011). In particu-

lar, two techniques have dominated the field since the Mayor and Queloz discovery:

radial velocity studies and transit observations.

1.1.1 Radial velocity method

The Mayor and Queloz discovery was made using the radial velocity method,

which characterizes the so-called “stellar wobble.” In a two-body system, each

body exerts a gravitational force on the other, in accordance with Newton’s third

law. When one body is considerably more massive than the other, it is often

convenient to assume the smaller body (e.g., the planet) orbits the more massive

body (e.g., the star). In reality, however, both bodies orbit the system’s barycen-

ter, or center of mass, although the star’s orbit is considerably less pronounced.

When the system’s orbital plane is face on (orbital inclination i = 0◦), the star’s

orbit is contained in the plane of the sky, and thus has no radial component along

our line of sight. However, if the star’s orbit is inclined (0◦ < i ≤ 90◦), it will

exhibit a radial velocity.

This periodic stellar motion towards and away from us results in a Doppler

shift in the light received from the star. Using spectroscopy, we measure these

blue- and red-shifts in the star’s spectrum, and derive its radial velocity curve

(see Figure 1.1). Using Kepler’s laws of planetary motion and Newton’s law of
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Figure 1.1: Figure from Mayor & Queloz (1995) showing the fluctuations in stellar ra-
dial velocity (vr) of 51 Peg as a function of orbital phase (φ) of the exoplanet companion
51 Peg b, which orbits nearly circularly with a period of 4.23 days. By convention, neg-
ative and positive vr indicate motion towards and away from the observer, respectively.
The solid black line indicates their model solution to the data (black points).

gravitation, the following equation relates the star’s radial velocity and the mass

of its planetary companion (Lovis & Fischer 2011):

K? =

√
G

1− e2
Mp sin iM?

−1/2a−1/2, (1.1)

where the radial velocity semi amplitude K? is the average of the minimum and

maximum radial velocities, G is the gravitational constant, e is the exoplanet’s

orbital eccentricity, Mp and M? are the exoplanetary and stellar masses, and a is

the semi-major axis of the exoplanetary orbit. Thus, in addition to characterizing

the basic shape of an exoplanet’s orbit (e and a), the radial velocity technique

gives the minimum mass of the planet Mp sin i. Without an independent means of
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determining i, radial velocity measurements place a lower limit on the actual mass

of the exoplanet. For instance, Mayor and Queloz’s radial velocity analysis gives a

minimum mass of Mp sin i = 0.47 MJ. In light of its orbital period (P = 4.23 days),

51 Peg b is a hot Jupiter—that is, a planet with mass on the order of Jupiter, in

a close-in orbit around its host star.

1.1.2 Transit method

For high orbital inclinations, an exoplanet may pass in front of its host star

along our line of sight. This event, called a transit, causes a periodic dimming

of the system’s brightness as the exoplanet blocks a portion of the star’s radiant

flux (see Figure 1.2). Analysis of the shape, duration, and depth of the transit

characterizes several exoplanetary parameters. Assuming the stellar radius is

known, the exoplanet’s radius can be determined from δ, the depth of the transit,

using

δ =
F? − Ftransit

F?
=

(
Rp

R?

)2

, (1.2)

where Ftransit and F? are the in- and out-of-transit fluxes, and Rp and R? are the

radii of the planet and star (Seager & Mallén-Ornelas 2003). e, a, and importantly,

i are characterized from the duration and shape of the transit (cf. Seager & Mallén-

Ornelas 2003; Winn 2011). For certain orbital constructs, the planet may also pass

behind the star, in an occultation or secondary eclipse. In the case of both transits

and occultations, the parameterizations are better constrained, particularly e, as

the eccentricity impacts the temporal separation between transit and occultation.

Clearly then, the combination of radial velocity and transit data allows a full

characterization of an exoplanet’s physical dimensions and orbit. For example,

HD 209458b was the first planet observed to transit (Charbonneau et al. 2000;
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Fig. 1.—Shown are the photometric time series, corrected for gray and color-
dependent extinction, for 1999 September 9 and 16 plotted as a function of
time from . The rms of the time series at the beginning of the night onTc
September 9 is roughly 4 mmag. The increased scatter in the September 16
data relative to the September 9 data is due to the shorter exposure times. The
data from September 16 are offset by !0.05 relative to those from Septem-
ber 9.

Fig. 2.—Shown are the data from Fig. 1 binned into 5 m averages, phased
according to our best-fit orbit, plotted as a function of time from . The rmsTc
variation at the beginning of the time series is roughly 1.5 mmag, and this
precision is maintained throughout the duration of the transit. The increased
scatter at the end of the time series is due to increasing air mass which occurred
at roughly the same time for both transits, since the two occurred very nearly
1 week apart. The solid line is the transit shape that would occur for our best-
fit model, , . The lower and upper dashed lines are theR = 1.27 R i = 87!.1p Jup
transit curves that would occur for a planet 10% larger and smaller in radius,
respectively. The rapid initial fall and final rise of the transit curve correspond
to the times between first and second and between third and fourth contacts,
when the planet is crossing the edge of the star; the resulting slope is a function
of the finite size of the planet, the impact parameter of the transit, and the
limb darkening of the star. The central curved portion of the transit is the time
between second and third contacts, when the planet is entirely in front of the
star.

M99. The important elements were the orbital period P and
the time of maximum radial velocity of the star Tmax. For this
Letter, we have analyzed four nights of data; two of these
(August 29 and September 13) occur off transit and establish
the nonvariability of the star, while two (September 9 and 16)
encompass the time of transit. We produced calibrated images
by subtracting a master bias and dividing by a master flat.
Sixteen images from September 16 were averaged to produce
a master image. We used DAOPHOT II (Stetson 1994) to pro-
duce a master star list from this image, retaining the 823 bright-
est stars. For each time series image, we then estimated a co-
ordinate transformation, which allowed for a linear shift dx and
dy. We then applied this coordinate transformation to the master
star list and carried out aperture photometry for all the images.
For each star, a standard magnitude was defined from the result
of the aperture photometry on the master image. We corrected
for atmospheric extinction using a color-dependent extinction
estimate derived from the magnitudes of the 20 brightest stars
in the field (excluding HD 209458 and two obviously variable
stars). For two of the nights of data (August 29 and September
13), the residuals for HD 209458 are consistent with no var-
iation. However, on the other nights (September 9 and 16), we
can see a conspicuous dimming of the star for a time of several
hours. These residuals are shown in Figure 1. The root mean
square (rms) variation in the resulting time series at the be-
ginning of the night of September 9 is 4 mmag; the dominant
source of noise for these bright stars is atmospheric scintillation.

3. ANALYSIS OF LIGHT CURVE

3.1. Orbital Parameters

As presented in M99, the derived orbital parameters from
the combined radial velocity observations are P = 3.52447 "
0.00029 days and Tmax = 2,451,370.048 " 0.014 HJD.
Since we observed two transits, it is possible to estimate

independently both a period and the time at the center of the
transit, , for the orbit. To derive the period, we phased theTc
data to an assumed value of P in a range surrounding 3.5 days
and interpolated the data from the first transit onto the grid of

observation times for the later transit. The weighted sum of
the square of the difference was calculated as a function of
assumed period, resulting in a clear minimum and a well-
defined error. We find the orbital period to be P = 3.5250"

days, consistent with but less precise than the value0.003
determined from the radial velocity observations. As discussed
in M99, the best-fit value of the mass for this star is M =s

M,; assuming this value, we determine the semimajor axis1.1
to be AU.a = 0.0467
We used the data from the earlier transit, which was the

more precisely observed, to determine Tc. For each assumed
value of Tc, we folded the light curve about Tc and calculated
the weighted sum of the square of the difference between
the two halves of the folded curve. We find that T =c

HJD. This value is consistent with2,451,430.8227" 0.003
but is much more tightly constrained than the value deter-
mined from the radial velocity observations.
Projecting the errors in P from the radial velocity obser-

vations and Tc from the photometry observations, the time of
transit can be calculated with a precision of better than half an
hour for the next 6 months.

3.2. Interpretation of the Transit Curve

For the purpose of interpreting the light curve, we binned
the residuals from both transits into 5 minute time bins ac-
cording to the orbit derived above. The time series rms of these
binned data is 1.5 mmag throughout the time span covered by
the observations, with an increase to larger scatter roughly
1 hr after the point of last contact due to the increasing air
mass. These binned data are plotted in Figure 2.
Five parameters participate in determining the precise shape

Figure 1.2: Figure from Charbonneau et al. (2000) showing a transit of the hot Jupiter
HD 209458b. The solid black line is their best fit solution to the data (black points),
while the dashed black lines indicate the effect of increasing and decreasing the planetary
radius, namely, causing a deeper and shallower transit, respectively.

see Figure 1.2), but was already identified by radial velocity measurements. Tran-

sit analysis indicates a planet with Rp = 1.27 RJ and orbital inclination 87.1◦.

Including radial velocity analysis yields a true planetary mass of 0.63 MJ. Armed

with both mass and radius, the mean density and surface gravity can be approx-

imated, as well as the escape velocity for different compounds (cf. Charbonneau

et al. 2000), which puts very rough constraints on the exoatmospheric compo-

sition. Unfortunately, only a small range of inclinations result in an observable

transit. Since exoplanetary systems are randomly oriented in the sky, the transit-

ing exoplanet population is a small subset of the general population.

Kepler

The Kepler Space Telescope (hereafter, Kepler) is a space-based observatory

dedicated to the discovery of transiting exoplanets, particularly planets orbit-
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ing Sun-like stars in their habitable zone—an orbital distance where liquid water

exists at temperatures known to support life on Earth. Launched in 2009, Ke-

pler has quasi-continuously observed over 100,000 stars in the same 115.6 deg2

field of view for just over four years using a 0.95 m Schmidt telescope, until two

of its four reactions wheels broke. During this initial phase of the mission, de-

noted K1, Kepler took either 30 minute long cadence (LC) or 30 second short

cadence (SC) integrations with its 42-CCD photometer, each CCD of which mea-

sures 2200 × 1024 pixels. The full Kepler bandpass covers 348− 970 nm, while

the half-maximum bandpass ranges from 435 − 845 nm. Thus, Kepler observes

predominantly in the optical and near-infrared spectrum, achieving an impressive

photometric precision of 18 ppm over six hours for a 12-magnitude target (Howell

et al. 2014). Further technical information can be found in the Kepler Instrument

Handbook (Van Cleve & Caldwell 2009) and Kepler Archive Manual (Thompson

& Fraquelli 2014).

The K1 phase was rather successful, resulting in over 1,000 confirmed transiting

exoplanets and over 3,100 candidates (NASA Exoplanet Archive). Figure 1.3

demonstrates a statistical analysis of Kepler discoveries with periods less than 85

days. It it clear that Kepler succeeded in discovering planets with a wide variety

of sizes, ranging from Earths (0.8 R⊕ − 1.25 R⊕) to giant planets (6 R⊕ − 22 R⊕).

However, most planets found had sizes of small Neptunes (2 R⊕−4 R⊕) and below.

These statistics bode well for the relative prevalence of Earth and super-Earth size

planets.

Following the loss of the second reaction wheel in 2013, the spacecraft lost

its fine-pointing ability, and the Kepler mission began a new phase, called K2.

Balancing against photon pressure from the Sun, Kepler now observes fields along

the ecliptic plane, taking 30 minute or one minute integrations. Even with the
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Figure 1.3: Figure from Fressin et al. (2013) showing the average number of planets
with periods less than 85 days orbiting mid- to late-type (FGKM) dwarfs, as derived
from Kepler discoveries in the first six K1 data sets (quarters). The data has been
binned by planet size: Earths (0.8 R⊕− 1.25 R⊕), super-Earths (1.25 R⊕− 2 R⊕), small
Neptunes (2 R⊕−4 R⊕), large Neptunes (4 R⊕−6 R⊕), and giant planets (6 R⊕−22 R⊕).

loss of its fine-pointing ability, the K2 mission has achieved a six-hour photometric

precision of 82 ppm for a 12-magnitude target (Howell et al. 2014). Thus, K2

achieves a precision that is only a factor four worse than that of the original

mission. One planet—a super-Earth—has already been confirmed in the K2 data

(Vanderburg et al. 2015), and a multi-planet system has recently been announced

(Crossfield et al. 2015).

1.1.3 Transit spectroscopy

While broadband, photometric studies of transits indicate a planet’s orbit and

physical dimensions, spectroscopically studying planets as they transit probes



1. Introduction 8

their atmospheres (cf. Burrows & Orton 2011; Meadows & Seager 2011). Perhaps

the most direct spectroscopic technique is the detection of spectral features in an

exoplanet’s irradiated atmosphere. If one is able to characterize the underlying

stellar spectrum, either from a model template or ideally from an empirical mea-

surement made during occultation, the planetary atmospheric spectrum is derived

by removing the stellar baseline from a spectrum taken during transit.

Analyses of these spectra yield a plethora of information about the plane-

tary atmosphere, for instance, composition, temperature, density, and structure.

Recently, rotational broadening of exoatmospheric spectral lines allowed a deter-

mination of the rotation velocity of an exoplanet—that is, the length of its day

(Snellen et al. 2014). Transit spectroscopy is also the most probable means of de-

tecting extraterrestrial life, by searching for biosignatures—gases indicative of life

(cf. Meadows & Seager 2011). Unfortunately, transit spectroscopy requires highly

precise spectroscopic data, which prohibits its use as a technique for characterizing

exoplanet atmospheres en masse.

1.2 Phase curves

Phase curves are small-scale, variable photometric effects that arise from an

exoplanet’s motion about its host star, including the stellar flux reflected and

re-radiated by the planet, the beaming effect resulting from the star’s radial ve-

locity, and the ellipsoidal variations due to the planet’s tidal distortion of the

star (see Chapter 2 for further discussion). Until the launch of Kepler, the preci-

sion required to study these small-scale interactions was not available in a survey

context.

Many early phase curve analyses involved measuring the thermal emission from
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a planet in the infrared, using facilities such as the Spitzer Space Telescope. For

instance, Figure 1.4 shows the increase in infrared emission from transit to occul-

tation of the hot Jupiter HD 189733b as measured by Knutson et al. (2007). Such

studies allow rather detailed atmospheric temperature analyses, however, since

these instruments are used for research in a wide range of subfields of astron-

omy, it would be difficult to usurp one for an extended exoplanet survey mission.

Kepler’s dedicated exoplanet mission has allowed extended, precise optical obser-

vations of exoplanet systems, some of which will have detectable phase curves.

Several groups have been working on characterizing individual Kepler exoplanets

and brown dwarfs from their phase curves (e.g., Barclay et al. 2012, Placek et al.

2014, Placek & Knuth 2015, Herrero et al. 2014, Shporer et al. 2011). Others have

begun to systematically comb through the Kepler K1 database of confirmed exo-

planets, characterizing all those they determine to exhibit phase curves (Esteves

et al. 2013).

A distinct advantage of phase curve analysis is its ability to fully characterize

the physical and orbital parameters of an exoplanet, in addition to rudimentary

atmospheric and surface properties. When all four effects can be modeled and fit,

the planetary mass is directly calculable without an inclination degeneracy. Ad-

ditionally, parameters quantifying the reflectivity and temperature on the planet

can be derived, which hint at the composition and dynamics of the atmosphere.

Such atmospheric information would normally require transit spectroscopy. Thus,

phase curves convey a degree of information that normally requires at least two

separate techniques, one involving spectroscopy.

Phase curve studies also have the potential to study non-transiting exoplanets.

Like the radial velocity technique, the magnitude of the phase curve effects dimin-

ishes with decreasing inclination, and thus analysis is constrained solely by the
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Figure 1.4: Figure from Knutson et al. (2007) showing infrared Spitzer Space Telescope
data of the hot Jupiter HD 189733b. The thermal emission curve rises from transit to
occultation, indicating the dayside temperature is higher than that of the nightside.

sensitivity of the photometric detector. This means that phase curve studies can

fully characterize exoplanets over a greater range of inclinations, allowing studies

of the majority of exoplanets that have yet to be fully characterized.

1.3 Importance of exoplanetary studies

Exoplanet detection and characterization is significant for several reasons.

Foremost among these is its impact on our understanding of the nature and forma-

tion of planetary systems. Simply put, the greater the sample of known planets,

the better the conclusions we can draw about their common properties and for-
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mation mechanisms. Until the discovery of exoplanets, the scientific community

had a pool of only eight major planets and several minor bodies endemic to one

solar system with which to study and theorize. With thousands of new worlds to

consider, we are able to statistically analyze the overall planet population, which

refines our understanding of planetary science.

Exoplanet studies also touch upon other scientific fields, namely chemistry

and biology. As previously discussed, transit spectroscopy enables the study of

chemical (and potentially biological) processes in disparate environments. Indeed,

the detection of biosignatures is at the forefront of astrobiology. Naturally, a

priority in the field of exoplanets is the discovery of another Earth-like planet

and the existence of extraterrestrial life. Phase curve studies have the potential

to significantly broaden the pool of known planets, thereby advancing the field

generally.

In Chapter 2, we present the phase curve model we use to analyze light curves.

Chapter 3 details our fitting formalism. Our results and analysis for known,

transiting exoplanets are set forth in Chapter 4. We conclude in Chapter 5 with

a review of our findings, as well as plans for future work.



Chapter 2

Phase Curve Model

Our model of planet phase curves consists of four photometric effects. Two of

these—reflected light (Frefl(t)) and thermal emission (Fthermal,day(t))—result from

planetary contributions to the system’s light curve. Ellipsoidal variations (Fellip(t))

and Doppler beaming (Fbeam(t)) arise from modulations of the stellar flux via

interactions with the orbiting planet. We construct our phase model by adding

the individual effects as follows:

f(t) =
Frefl(t)

F?
+
Fthermal,day(t)

F?
+
Fellip(t)

F?
+
Fbeam(t)

F?
+ f0, (2.1)

where f(t) is the normalized light curve flux as a function of time, F? is the median

stellar flux, and f0 is a variable flux offset. Our model includes neither transits

nor occultations. The following sections discuss each component of our model.

2.1 Generating an orbit

Since the four photometric effects we model vary with orbital phase, we first

generate an orbit from the input parameters (Table 2.1). We begin by calculating

the mean anomaly (M(t)), an angular measure of the fraction of the orbital period

completed:

M(t) = M0 +
2πt

P
. (2.2)
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From the mean anomaly, we calculate the eccentric anomaly (E(t)), given by

E(t) = M(t) + e sinE(t). (2.3)

As shown in Figure 2.1, the eccentric anomaly is the angle between the orbital

ellipse’s major axis and the vector from the center of the ellipse to the planet’s

projected location on the circumscribed circle.

Orbital parameters

P orbital period
a semi-major axis
e eccentricity
i inclination
ω argument of periastron
M0 initial mean anomaly

Planetary parameters

Mp planetary mass
Rp planetary radius
Ag geometric albedo
Tday planetary dayside temperature

Stellar parameters

M? stellar mass
R? stellar radius
Teff stellar effective temperature

Table 2.1: Model input parameters.

Equation 2.3 is transcendental in E, and therefore must be solved numerically.

We implement an iterative series solution as outlined in Murray & Dermott (1999).

This involves calculating successive values of E using the equation

Ei+1 = M + e sinEi, (2.4)
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Figure 2.1: Visualization in the orbital plane of the eccentric anomaly E and true
anomaly ν. The ellipse represents the planet’s true orbital path, centered on the origin
O. The star lies at the foci F , a distance d from the planet. The circumscribed circle
has radius a equal to the semi-major axis of the orbital ellipse. Adapted from Figure
2.7 in Murray & Dermott (1999).

until a predetermined tolerance for |Ei+1 − Ei| is achieved. For our model, the

tolerance value is 10−8, and per Murray & Dermott (1999)’s suggestion, we initial-

ize our iteration routine with E0 = M . This numerical scheme fails for e & 0.66

(Murray & Dermott 1999), which informs our choice of bounds for light curve

fitting (see Chapters 3 and 4), but should not impact our results significantly as

phase curve analysis is most sensitive to large, close-in planets, which tend to have

eccentricities close to zero.

Using the eccentric anomaly, we calculate the true anomaly

ν(t) = 2 arctan

(√
1 + e

1− e
tan

E(t)

2

)
, (2.5)
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and the planet-star separation

d(t) = a [1− e cosE(t)]. (2.6)

The true anomaly is similar to the eccentric anomaly, except one of the foci of

the ellipse—rather than its center—serves as vertex of the angle (see Figure 2.1).

For a more detailed treatment of orbital dynamics, and derivations of the above

equations, please see Murray & Dermott (1999).

Finally, we calculate the phase angle

θ(t) = arccos (sin [ω + ν(t)] sin i), (2.7)

which represents the angle between the line-of-sight vector and the star-to-planet

vector (Mislis et al. 2012; Placek et al. 2014). The phase angle thereby provides

a convenient angular quantification of the planet’s position in its orbit about its

host star.

2.2 Reflected light

As a star irradiates an orbiting planet, some of the light reflects off the planet’s

surface and atmosphere along our line of sight, thereby contributing to the sys-

tem’s light curve. Treating the star as an isotropic radiator and the planet as a

Lambertian sphere1, the normalized, reflected flux is given by

Frefl(t)

F?
=
Ag

2

R2
p

[d(t)]2
[1 + cos θ(t)], (2.8)

1A Lambertian sphere reflects incident radiation such that the intensity is independent of
viewing angle (Pedrotti & Pedrotti 1987).
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where Ag is the geometric albedo (Mislis et al. 2012; Placek et al. 2014). The

geometric albedo Ag is the ratio of the planetary reflected flux at full phase to the

reflected flux of a Lambertian disk of comparable cross-sectional area (Burrows

& Orton 2011). This quantity varies with atmospheric and surface composition,

and thus modeling the reflected light and constraining Ag provides a very basic

characterization of the planet’s atmosphere. For instance, the presence of clouds

serves to increase the geometric albedo (Burrows & Orton 2011).
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Figure 2.2: Simulated reflected components of three hot Jupiters, differing only in
their eccentricities and arguments of periastron. The reflected curves of the circular
orbit (black line) and eccentric orbit with periastron on the far side of the star (green
line) are both unimodal. The curve of the eccentric orbit with periastron on the near
side of the star (blue curve) is bimodal.

For circular and nearly-circular orbits the reflection curve is unimodal (see Fig-

ure 2.2, black line). In this case, reflection reaches a maximum at full phase, when

the fully-illuminated side of the planet faces us. Conversely, the reflected compo-
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nent experiences a minimum at new phase, when the planet’s non-illuminated side

faces us. For more eccentric orbits, the reflection curve may remain unimodal (see

Figure 2.2, green line) or become bimodal (see Figure 2.2, blue line) depending

on the location of periastron/apastron. In the latter case, apastron occurs on the

far side of the star, concurrent with full phase. The [d(t)]−2 term overcomes the

constructive influence of observing a fully-illuminated planetary disk, resulting

in a dip in the reflected component. For any eccentricity, however, the overall

oscillation of reflected light follows the orbital period.

2.3 Thermal emission

In addition to reflecting its host star’s light, a planet also absorbs and re-

radiates stellar flux as thermal emission. Following the example of Placek et al.

(2014), we assume the thermal emission of the nightside of the planet is negligible

compared to that of the dayside, and therefore only model the latter. Approxi-

mating the planet as a blackbody radiator (Placek et al. 2014),

Fthermal,day(t)

F?
=

1

2
[1 + cos θ(t)]

(
Rp

R?

)2 ∫ B(Tday)G(λ)dλ∫
B(Teff)G(λ)dλ

, (2.9)

where B(T ) is the Planck distribution at temperature T and G(λ) is the Kepler

response function at wavelength λ (Van Cleve & Caldwell 2009). The equation

for thermal emission has a θ(t) dependence similar to that of reflected light, but

lacks the [d(t)]−2 factor. Thus, for all eccentricities, thermal emission follows a

unimodal pattern with a period corresponding to the planet’s orbit, experiencing

maximum emission at full phase and minimum at new phase. The similarity of the

reflected and thermal components at low eccentricities introduces a degeneracy to

the model. Since the Kepler telescope observes in a single bandpass (348−970 nm),
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there is no way to distinguish thermal from reflected photons in such cases. If for

higher e the reflected component takes on a bimodal shape, it becomes possible

to distinguish the reflection and thermal emission effects (see Figure 2.3, middle

panel).
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Figure 2.3: Comparison of reflected and thermal emission components of the same
three hot Jupiters from Figure 2.2. Note for the circular orbit (left panel), the effects
are indistinguishable, while in the case of the reflected component becoming bimodal
at higher e (middle panel), the two take different shapes. The right panel demonstrates
that if the reflected curve remains unimodal at higher e, the general shapes of the two
effects remain relatively similar.

Modeling thermal emission characterizes Tday, which gives further insight into

the atmospheric properties of the planet. For instance, the relationship between

the incident solar flux and Tday reveals how efficiently the atmosphere absorbs

radiation. If the thermal emission flux exceeds that which the planet receives from

its star, the planet likely has an additional, internal energy source, for instance

radioactive and/or tidal heating.
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2.4 Ellipsoidal variations

Ellipsoidal variations result from the tidal force of the planet on its host star,

causing an elongation of the star towards the planet, and thus a periodic oscillation

in the stellar flux. Placek et al. (2014) characterize the normalized flux from

ellipsoidal variations as

Fellip(t)

F?
= β

Mp

M?

[
R?

d(t)

]3

(cos2 [ω + ν(t)] + sin2 [ω + ν(t)] cos2 i), (2.10)

where β is the gravity darkening exponent, given by Mislis et al. (2012) as

β =
log10 (GM?/R

2
?)

log10 Teff

. (2.11)

The constant β accounts for the variation in flux output with surface gravity for

a tidally-deformed star. Regions with lower suface gravity will be less radiant

than those with high surface gravity (cf. von Zeipel 1924). Unlike reflection and

thermal emission, the ellipsoidal variations effect peaks distinctly twice on each

orbit, and is thus more easily distinguishable from the other effects. The peaks

occur at the quarter phases, when the star presents its greatest cross-sectional

area along our line of sight (see Figure 2.5)

The characterization of ellipsoidal variations (as well as Doppler beaming)

enables us to constrain the mass of the planet using photometry alone, a feat that

previously required Doppler spectroscopy. Along with the radius derived from

either transit analysis or the reflection and thermal effects discussed above, the

planet’s average density is calculable. Thus, with a full phase curve analysis, we

can potentially make basic assumptions about the composition of both a planet’s
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atmosphere and interior.

2.5 Doppler beaming

Doppler beaming results from the reflex motion of a host star about the sys-

tem’s barycenter—the so-called “stellar wobble.” Special relativity predicts an

increase in observed flux from an object moving towards an observer and a de-

crease in flux for a receding object. Whereas the luminous object may radiate

isotropically in its rest frame, in an inertial frame the object’s radiation concen-

trates along its velocity vector (see Figure 2.4; cf. Rybicki & Lightman 2004).

Assuming the star’s radial velocity is non-relativistic and any bandpass effect is

negligible, Loeb & Gaudi (2003) give the normalized beaming component as

Fbeam(t)

F?
=

4 vr
c
, (2.12)

where vr is the radial velocity of the star—its velocity along our line of sight.

Murray & Correia (2011) give the radial velocity for an eccentric orbit as

vr = Vz +K (cos [ω + ν(t)] + e cosω), (2.13)

where Vz is the proper motion of the system’s barycenter along our line of sight

and K is the radial velocity semi-amplitude. Using the formulation for K from

Equation 1.1 and neglecting the proper motion of the system, Equation 2.13 be-

comes

vr =

(
2 π G

P

)1/3
Mp sin i

M
2/3
?

√
1− e2

(cos [ω + ν(t)] + e cosω), (2.14)
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where we have assumed the mass and Doppler beaming of the planet is negligible

compared to those of the star (Placek et al. 2014).

Figure 2.4: A moving object isotropically radiating in its rest frame (left) appears
to an observer in an inertial frame to beam its light along its velocity vector (right).
Adapted from Figure 4.3 of Rybicki & Lightman (2004).

In our quantification of the four phase effects, Doppler beaming is unique in

that it varies between positive and negative relative flux values in a classic sinusoid

fashion. Its curve’s unique shape reduces degeneracy between beaming and other

effects. Similar to ellipsoidal variations, Doppler beaming places constraints on

the planet’s mass, and experiences maxima and minima at quarter phases when

the star’s line-of-sight velocity is correspondingly maximized and minimized (see

Figure 2.5).

2.6 Combining the effects

When summed, the four phase effects induce unique patterns in the composite

phase curve. Consider for instance the three light curves shown in Figure 2.5.

As previously discussed, the ellipsoidal variations produce double peaks of equal
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height at the quarter phases of the orbit, which can contribute to an overall

bimodal feature in the light curve. Reflection and/or thermal components may

serve to fill in the trough between peaks, and in cases where these two effects are

particularly strong, will generally level off the phase curve near orbital phases of

0.5 (see Figure 3.4, planet one). Since Doppler beaming is the only effect to yield

both positive and negative values, including the beaming effect will introduce

asymmetries. In the case of Figure 2.5, the beaming causes asymmetric peaks,

i.e., peaks of different amplitudes.
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Figure 2.5: Top panel: Combined effects for the three hot Jupiters from Figures 2.2
and 2.3. Bottom panel: Constituent effects.



Chapter 3

Fitting

In choosing a method to fit our phase curve model to photometry, we need

to consider several factors. Chief among these is how to cope with parameter

degeneracy, which occurs when multiple parameters have a similar effect on the

resulting model. For instance, from the equation for thermal emission (Equation

2.9), it is clear that increasing the radius of the planet Rp or increasing the day-

side planet temperature Tday both serve to increase the amplitude of the thermal

contribution to the system’s light curve. In such a case, a fitting routine may have

difficulty deducing the correct pair of parameter values. Instead, the routine may

return one parameter value inflated and the other depressed, a combination that

may give an overall thermal amplitude similar to that of the correct values.

An equally important issue is ensuring the fitting routine actually finds the

best fitting set of parameters. Such algorithms aim to minimize the residuals,

the absolute difference between a model and data. As with most optimization

algorithms, fitting routines often times suffer from the tendency to return a “best-

fit” model that actually corresponds to a local minimum in the residuals, rather

than the global minimum. Once in a local minimum, many algorithms have a

difficult time extracting themselves, since the surrounding residual gradient serves

to keep them in the minimum.
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3.1 Markov chain Monte Carlo

In an attempt to mitigate these issues, we opt to implement a Markov chain

Monte Carlo (MCMC) fitting routine (cf. Ivezić et al. 2014). In general, an MCMC

populates a model’s parameter space with one or more walkers, which execute

a random walk, evaluating the goodness of fit at each step. Theoretically, the

walker(s) will converge to the best-fitting parameters. There are many implemen-

tations of the MCMC, varying in computational intensity and implementation of

the random walk. In the following subsections, we describe three of these imple-

mentations and develop some of the intricacies of MCMC fitting.

3.1.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) implementation is the simplest of the MCMC

methods (Foreman-Mackey et al. 2013; Ivezić et al. 2014). Consider anm-dimensional

parameter space, containing one walker. Let the m-tuple X(n) denote the walker’s

current position at the nth step. To determine the walker’s position at the n+ 1

step, a proposal position Y is drawn from a proposal distribution in one of the

dimensions—for instance, a Gaussian of scale a centered at the walker’s position

in the mth dimension. Let P (X) denote the probability distribution, a mea-

sure of the goodness of fit at the position X in parameter space. The ratio

α = P (Y )/P (X(n)) is calculated, and compared to β, a number randomly drawn

on the range [0, 1]. If α ≥ β, the proposal position Y is accepted such that

X(n+ 1) = Y ; otherwise, X(n+ 1) = X(n). This process is repeated for n steps.

The setup of even this simplest version of an MCMC has advantages over typ-

ical least-squares minimization routines. The random-walk nature of the position
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update criterion—which always accepts a better fitting position in addition to a

non-negligible fraction of worse-fitting positions—generally enables the MCMC to

more completely probe the parameter space, while still achieving greater efficiency

than a grid search. The resulting distribution of the walker’s steps in parameter

space—the posterior distribution (PD)—can be used to infer error bars for fitted

parameters and evaluate degeneracy between parameters (discussed below).

Nonetheless, the MH method tends to perform poorly in the case of degenerate

parameters. Since the walker explores parameter space in orthogonal steps—that

is, only proposing a change in one dimension per step—its convergence to the

best-fitting set of parameters in a non-orthogonal, degenerate subspace will be

inefficient. As discussed in the following sections, our phase curve model has

several degenerate parameters, and we opt not to implement the MH method of

MCMC.

3.1.2 Affine-invariant sampler

The affine-invariant (AI) MCMC (Goodman & Weare 2010; Foreman-Mackey

et al. 2013) attempts to resolve parameter degeneracy by using an ensemble of

walkers, and proposing steps in multiple dimensions. To this end, the proposal

position Y for each walker is selected from a proposal distribution connecting

that walker’s current position to that of another randomly selected walker. After

an MCMC is well into its run, this proposal selection method will better enable

any errant walkers to join walker clumps surrounding a region of high proba-

bility. That the walkers make non-orthogonal steps also enables more efficient

convergence, as the ensemble can more directly move through non-orthogonal,

degenerate subspaces.
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Figure 3.1: Solid blue line: Linear function from which data was derived. Black
dots: Data used in MCMC fitting routine, created by adding Gaussian random noise
to evenly-sampled points from the linear function. Solid red line: Best-fitting linear
function as given by the AI MCMC fitting routine.

To demonstrate the effectiveness of the AI MCMC, consider the process of

fitting a linear trend. The data set in Figure 3.1 was created by adding random

Gaussian noise to points uniformly sampled from a line. An AI MCMC routine

using 100 walkers was run for 500 steps. The results of a run are commonly

visualized using step figures and triangle plots. Figure 3.2 is a set of step figures,

that is, visualizations of the walkers’ movements through each dimension of the

parameter space. Each black line corresponds to the path of a single walker.

Tracing a line’s path through the steps of the run (x-axis) shows the various

parameter values occupied by the walker; in this case, the slope m and y-intercept

b. The walkers were initially uniformly distributed on the interval [−5, 5] for both

m and b. The step figure clearly demonstrates the convergence of the walkers to

best fit values from this uniform initial distribution.
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Figure 3.2: Step figures for linear parameters m (top panel) and b (bottom panel),
tracing the paths of the AI MCMC walkers through parameter space at each step in the
fitting routine. The red overplotted lines indicate the true values m = 2 and b = 1.

While step figures assist in evaluating the convergence of an MCMC, a triangle

plot provides a means to evaluate a fit’s robustness. Figure 3.3 is a triangle plot

of the linear fit, with the first 39 steps from each walker discarded as a “burn-in,”

so as to remove any influence of the starting distribution. The length of this burn-

in is chosen as three times the maximum autocorrelation time, a measure of the

number of steps necessary to achieve independent sampling of the PD (Foreman-

Mackey et al. 2013). The histograms display the PD for each parameter, all the

positions occupied by the walkers following the burn-in phase. For constrained

parameters, these one-dimensional PDs should take on a semi-Gaussian shape.

Overlaid on the histograms are dashed lines that correspond to the 16th, 50th,

and 84th percentiles, effectively showing the median value with 1σ errors. The

solid blue line corresponds to the set of best-fitting parameters found by the

routine. This ideally corresponds to the median value.
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Figure 3.3: A triangle plot, showing the one-dimensional and two-dimensional poste-
rior distributions for the MCMC run. The best-fitting parameters are indicated by the
solid blue lines, while the median values and 1σ errors are given by the dashed black
lines.

The scatter plot is a two-dimensional PD that demonstrates the level of corre-

lation, or covariance, between pairs of parameters. Uncorrelated parameters will

show circular scatter, or if the scaling of one parameter is dramatically different

than the other, elongation in either the horizontal or vertical directions. Degener-

ate parameters manifest angled trends, reflecting that a change in one parameter

can be well-compensated by altering the value of the other. Such is the case for

the parameters m and b in our linear fitting example. The best-fit line given by

the MCMC run is plotted in red in Figure 3.1, and agrees well with the original

linear function.

For more complex models, such as that of our phase curve, the PD can be-

come more complicated. In addition to heavily degenerate parameters, the PD
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itself may take on a multi-modal appearance. Such a form indicates the presence

of local maxima in the distribution. AI MCMC is not well suited to dealing with

multi-modal PDs because of the aforementioned collectivism of the walkers. If a

large portion of the walkers become lodged in a sharp local maximum, the remain-

ing walkers will have a tendency to move towards this false best fit. Alternatively,

if the walkers become divided between two maxima, their movement will be con-

fined to the line collecting the two. The probability gradient connecting the two

regions may be prohibitively low, preventing the collection from coalescing to the

better fit. We seek an MCMC that can cope with such multi-modality, and thus

ultimately decided against using a pure AI implementation.

3.1.3 Parallel-tempering algorithm

Parallel-tempering (PT) MCMC (Earl & Deem 2005; Foreman-Mackey et al.

2013) implements a modified version of the AI MCMC to remedy the latter’s dif-

ficulty dealing with multi-modal PDs by simultaneously running several MCMCs

at different “temperatures.” Increasing the temperature flattens the probability

distribution, allowing the walkers more freedom of movement in parameter space.

The PT routine takes advantage of these multiple temperatures by periodically

swapping walkers between different temperature runs, enabling the free-wielding

nature of the high temperatures to trickle-down to the more judicious low tem-

peratures. This mixing between broad and precise sampling seeks to minimize

the complicating effect of multi-modality. We therefore implement a parallel-

tempered MCMC from the emcee Python library (Foreman-Mackey et al. 2013)

in our fitting formalism, as described in the following section.
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3.2 Formalism

Our fitting process, or formalism, for a given light curve consists of a two-

phase approach. The first phase provides a broad scan of the parameter space,

and investigates different combinations of phase effects. The second phase acts as

a followup analysis, meant to hone and refine the results of the first. We discuss

both phases in greater detail below.

3.2.1 Phase one: model comparison

The light curves of star-planet systems all feature contributions from each of

the four effects we model; however, the amplitudes of each effect will vary. When

the amplitudes for one or more effects drops below the sensitivity of Kepler, the

validity of a fitted model including those effects is questionable. To allow for

such cases, we implement model testing between different combinations of phase

effects. Including the null model, which only fits the variable flux offset term,

there are sixteen distinct models, each with their own set of fitted parameters.

For instance, for models that fit reflection, but not thermal emission, the Rp and

Ag terms must be fit jointly, since no other equation constrains either parameter.

The different models and their parameter sets are listed in Table 3.1.

Phase one of our fitting formalism consists of running two PT MCMCs in series

for each model. For the first of the two runs, we initialize the walkers in a uniform

distribution within the allowed bounds of parameter space. In the second run,

we start the walkers in a Gaussian ball around the best-fitting parameter values

from the first run, to enable a better-defined PD. For both sets of runs, we use

five temperatures, 100 walkers, and 1,000 steps.
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Model Fitted parameters

Re+Th+El+Do Mp — Rp Ag Tday

Th+El+Do Mp — Rp — Tday

Re+El+Do Mp

√
Ag Rp — — —

Re+Th+Do Mp — Rp Ag Tday

Re+Th+El Mp — Rp Ag Tday

El+Do Mp — — — —
Th+Do Mp — Rp — Tday

Th+El Mp — Rp — Tday

Re+Do Mp

√
Ag Rp — — —

Re+El Mp

√
Ag Rp — — —

Re+Th — — Rp Ag Tday

Do Mp — — — —
El Mp — — — —
Th — — Rp — Tday

Re —
√
Ag Rp — — —

null — — — — —

Table 3.1: Parameters that vary between models of different combinations of effects.
Note that at least three effects, including both reflection and thermal, must be fit in
order to fully characterize the planet (bolded model names). e, i, ω, M0, and f0 are fit
by all models.

From the second MCMC run for each of the sixteen models, we extract the

minimum reduced chi-square value (χ2
ν), and use these to determine which com-

bination of effects describes the data best. Determining which model provides a

statistically better fit requires considering both the quality of the fit and the com-

plexity of the model. For two models of equal complexity (i.e., the same number

of fitted parameters), the better fitting model is simply the one with the lesser χ2
ν .

If two models have different numbers of parameters, the F-test (cf. Bevington &

Robinson 1992) provides a means to determine whether an increase in fit quality is

justified by an increase in model complexity. In this manner, we rank the success

of each model’s ability to fit the data.
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3.2.2 Phase two: honing the fits

Phase two refines the fits of the top three, best-fitting models as given by phase

one. For each model, we run an additional ten PT MCMCs with five temperatures,

100 walkers, and 1,000 steps. The initial walker positions for these ten runs are

Gaussians centered at the set of best-fitting parameter values from the second run

of phase one. These sets of ten runs allow an evaluation of the robustness of our

overall fitting process: if all give relatively similar results, we can be confident the

results represent the best-fitting model and parameter values.

3.3 Synthetic planet tests

To test and demonstrate our fitting formalism, we implement it on two syn-

thetic light curves that contain a planetary phase-curve signal. The “true” param-

eters used to create these light curves are given in Table 3.2, and the light curves

themselves in Figure 3.4. Note that both planets are hot Jupiters, orbiting the

same type of star, at an inclination that would cause them to transit. For the pur-

pose of this demonstration, we do not attempt to model and then excise transits

and occultations. Instead, we construct the light curve solely from phase curve

variations. To estimate Kepler-level noise, we add Gaussian noise characteristic

of a similar Kepler target, realizing this is a rough approximation.

For purposes of fitting, we assume the period of the model planet is known,

as is the case for confirmed planets. Using Newton’s version of Kepler’s third

law, we derive the semi-major axis of the orbit from the period. We also take the

stellar parameters in Table 3.2 to be known. We are thus left with, at most, nine

free parameters to fit, in the case of the most complex model (Re+Th+El+Do).

We apply our fitting formalism (discussed above) to both model planets’ data,
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Model parameters Planet 1 Planet 2

P [days] 1.75 5
e 0.05 0.05
i [deg] 85 85
ω [rad] 3.5 0
M0 [rad] 1.2 1.2

Mp [MJ] 8 8
Rp [RJ] 2 2
Ag 0.15 0.1√
AgRp [RJ] 0.77 0.63

Tday [K] 3500 2500

f0 2× 10−4 2× 10−4

M? [M�] 2.05 2.05
R? [R�] 2.55 2.55
Teff [K] 8500 8500

Table 3.2: Input parameters used to create synthetic light curves.

enforcing parameter bounds given in Table 3.3. The upper limit on the eccen-

tricity is constrained by the limitation of our iterative series solution method for

calculating the eccentric anomaly (see Chapter 2). Otherwise, the bounds are

very general, and assume no prior knowledge of the planets. Further refinement

of these bounds is possible. For instance, it is unlikely for a planet to have an

eccentricity in excess of 0.1, and even more unlikely in the case of close-in planets,

which tend to produce stronger phase effects. We will return to refining bounds

based on a priori knowledge in Chapter 4. For now, however, we choose to leave

them relatively unconstrained for these synthetic tests, if for no other reason than

to probe the effectiveness of our fitting formalism over a larger parameter space.
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Model parameters Bounds

e [1× 10−3, 0.6]
i [deg] [0, 90]
ω [rad] [0, 2π]
M0 [rad] [0, 2π]

Mp [MJ] [0.1, 20]
Rp [RJ] [0.1, 10]
Ag [0, 1]√
AgRp [RJ] [0, 10]

Tday [K] [0, 6000]

f0 [−1× 10−2, 1× 10−2]

Table 3.3: Parameter bounds used for fitting the synthetic light curves. Note that
while the i bounds are given in degrees, for fitting purposes, we sample cos i on [0, 1] to
ensure uniform spherical sampling.
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3.3.1 Planet one

Table 3.4 gives the results of model comparison for planet one. Statistically,

the best-fitting model is that which only consists of a reflected component. The

four-effect model with which we created the synthetic data does not rank in the

top three statistically significant models, suggesting model degeneracy. We there-

fore include the four-component Re+Th+El+Do model in the phase two runs for

diagnostic purposes, in addition to the three most significant models.

Model χ2
ν

Th+El+Do 1.017
Re+Th+El+Do 1.019
Th+El 1.027
Re+Th+El 1.029
Re+El+Do 1.040
Re+El 1.061
Re+Do 1.109
Re 1.111
Re+Th+Do 1.115
Re+Th 1.118
Th 1.191
Th+Do 1.194
El+Do 3.623
El 3.850
Do 12.052
null 19.929

(a)

Model χ2
ν

Re 1.111
Re+El+Do 1.040
Re+El 1.061
Re+Do 1.109
Th+El+Do 1.017
Th+El 1.027
Th 1.191
Re+Th+El+Do 1.019
Re+Th 1.118
Th+Do 1.194
Re+Th+El 1.029
Re+Th+Do 1.115
El+Do 3.623
El 3.850
Do 12.052
null 19.929

(b)

Table 3.4: Model testing results for planet one. (a) Models sorted by reduced chi-
square values. (b) Models and corresponding reduced chi-square values sorted by sta-
tistical significance, as given by the F-test.

The phase two results for planet one are given in Table 3.5, for both the Re and

Re+Th+El+Do models. A cursory comparison with the true parameter values

(Table 3.2) immediately reveals poor agreement for the Re model results. Only
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the fitted i and
√
AgRp median values agree to within 3σ with the true values.

The four-effect model returned remarkably better parameters, all of which agree

within 1σ of the true parameters except for e, Mp, Ag, and Tday, which agree to

within 2σ.

The triangle plots of the best runs for the Re and four-effect models (Figures

3.5 and 3.6, respectively) give insight into parameter degeneracies. For the four-

component model, PD scatter plots indicate degeneracy between Rp and Ag, and

Rp and Tday, which manifest in both the best fit values and median values as

depressed radius and albedo values, and increased dayside temperatures. Such

a result is understandable considering that these three parameters have similar

influences on the reflection and thermal component amplitudes, which at such

small eccentricities are nearly indistinguishable (see Chapter 2).

The plots of the best fitting models (Figures 3.7 and 3.8) help justify the

statistical significance of the single-component Re model over the four-component

model. The synthetic data’s unimodal appearance can be well-reproduced by a

unimodal reflection curve, albeit for parameter values that differ significantly from

the true values. Since the χ2
ν values are so similar, the simpler model is preferred.
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Parameter Best Median

Re

e 0.1108 0.1259+0.0086
−0.0085

i [deg] 23.4 36.6+19.1
−8.0

ω [rad] 4.635 4.591+0.026
−0.034

M0 [rad] 0.199 0.234+0.030
−0.029√

AgRp [RJ] 2.66 1.90+0.36
−0.41

Re+Th+El+Do

e 0.0720 0.0694+0.0083
−0.0099

i [deg] 76 74+11
−12

ω [rad] 3.36 3.41+0.15
−0.15

M0 [rad] 1.34 1.31+0.14
−0.15

Mp [MJ] 8.77 8.90+1.57
−0.79

Rp [RJ] 2.38 1.95+0.50
−0.34

Ag 0.026 0.050+0.063
−0.035

Tday [K] 3610 3810+320
−280

Table 3.5: Results of the phase two runs for planet one for the most statistically sig-
nificant model, as well as the four-effect model. The second column gives the parameter
values corresponding to the best-χ2

ν fit over the ten runs. The third column gives the
median parameter values with 1σ errors for the best-χ2

ν fit.
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3.3.2 Planet two

Phase one of the formalism for planet two gives the Doppler beaming-only

model as the best-fitting, and the most statistically-significant model (see Table

3.6). As in the case of planet one, the Re+Th+El+Do model does not make

the top three most statistically significant models, but we choose to include it in

phase two nonetheless. The phase two results are similar to those of planet one

in that the median parameters for the four-effect model are much closer to the

true parameter values. In the Do model, for instance, the fitted median value for

Mp is more than double the true value, as the mass of the planet must increase

to replicate the curve created from four effects with just one (see Figures 3.9 and

3.10).

From both the 1σ errors on the median values and the corresponding trian-

gle plot (Figure 3.12), however, it becomes clear that the four-component model

parameters for planet two are less constrained than those for planet one. This de-

crease in constraint from planet one to planet two likely results from the decrease

in signal strength between the two planets. Indeed, planet one orbits its star

with a period less than half that of planet two, and thus has relatively amplified

phase effects. The fit results for planet two also reveal degeneracies between the

Rp, Ag, and Tday. For both the median and best-fit values, the undervaluation of

the planetary radius is compensated by an inflation in the values for albedo and

temperature.
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Model χ2
ν

Do 1.0116
Re 1.0117
Re+El 1.0121
Re+El+Do 1.0136
Th 1.0136
Re+Do 1.0138
Th+El+Do 1.0147
Th+El 1.0154
Th+Do 1.0158
Re+Th 1.0158
Re+Th+El 1.0164
Re+Th+El+Do 1.0168
Re+Th+Do 1.0177
El+Do 1.0194
El 1.0274
null 1.3837

(a)

Model χ2
ν

Do 1.0116
Re 1.0117
El+Do 1.0194
El 1.0274
Re+El 1.0121
Re+El+Do 1.0136
Th 1.0136
Re+Do 1.0138
Th+El+Do 1.0147
Th+El 1.0154
Th+Do 1.0158
Re+Th 1.0158
Re+Th+El 1.0164
Re+Th+El+Do 1.0168
Re+Th+Do 1.0177
null 1.3837

(b)

Table 3.6: Same as Table 3.4, but for planet two.
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Parameter Best Median

Do

e 0.349 0.340+0.067
−0.069

i [deg] 84 72+12
−13

ω [rad] 4.89 4.87+0.23
−0.23

M0 [rad] 1.72 1.74+0.19
−0.18

Mp [MJ] 16.5 17.2+1.6
−1.5

Re+Th+El+Do

e 0.141 0.105+0.082
−0.064

i [deg] 80 64+19
−19

ω [rad] 6.27 5.82+0.33
−0.60

M0 [rad] 1.27 1.67+0.42
−0.31

Mp [MJ] 7.6 9.6+3.8
−4.6

Rp [RJ] 0.45 0.66+0.43
−0.30

Ag 0.24 0.50+0.33
−0.32

Tday [K] 4400 3800+1200
−1500

Table 3.7: Same as Table 3.5, but for planet two.
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Figure 3.11: Triangle plot of the phase two run that yielded the best fit of the Do
model for planet two.
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Figure 3.12: Triangle plot of the phase two run that yielded the best fit of the
Re+Th+El+Do model for planet two.
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3.3.3 Conclusions

Fitting the synthetic light curves raises several issues pertinent to fitting real

data. Chief among these is degeneracy between different phase curve models. It

is clear from our tests that it is possible—if not common—for models consisting

of only one effect to be more statistically significant than those fitting multiple ef-

fects, even when we know those additional effects are present. Having some prior

knowledge of the planet can assist in evaluating whether a given model makes

sense. For instance, if we are analyzing a known transiting/occulting planet, we

will have a general idea of what the eccentricity of its orbit is from the separation

between transit and occultation. If we allow the eccentricity to vary freely over

generous bounds in the fitting, and a model gives an e that deviates significantly

from the eccentricity we expect, we can question the validity of that model. Al-

ternatively, we can restrict the bounds of the eccentricity, to prevent degeneracy

with models that give physically unrealistic fits.

The synthetic data tests also demonstrate a parameter degeneracy between

Rp, Ag, and Tday. As these parameters have broadly the same constructive effect

on the reflection and thermal components, we are not surprised by the covariance

in the fit results. As with the model degeneracy, however, a priori knowledge

can help break parameter degeneracy. Again, for a known transiting exoplanet,

we can determine the planetary radius, and thereby narrow the bounds of that

parameter. While this may not completely resolve the degeneracy between Rp,

Ag, and Tday, it will prevent fits from giving a planetary radius that is known to

be untrue.

We also must recognize that when the phase curve signal strength decreases

to a level comparable to the noise in the data, the fit results will loose their
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precision. This selection effect, which makes phase curve analysis most effective

for more massive planets closer to their stars (like planet one), is common to both

the transit and radial velocity techniques. Our analysis of planet two suffers from

this bias, despite the fact that it orbits its star at a rather close, five-day orbital

period and has a substantial mass. Detecting hot Jupiters further out, or even

super-Earths and Neptunes with close orbits will be challenging.



Chapter 4

Kepler K1 Planets

While testing our fitting formalism on synthetic data proved illuminating, the

process is necessarily self-consistent. We would like to compare results of our

fitting process on actual Kepler data to other published analyses, particularly

those involving phase curves. To this end, we selected several K1 planets whose

transits and phase curves have been analyzed, and ran them through our fitting

formalism. This chapter presents our data reduction technique for processing

Kepler K1 data, followed by the results of fitting for each of these planets.

4.1 Data reduction

In an attempt to correct for systematics, the Kepler team developed a pipeline

that uses engineering data to detrend the raw Kepler light curves (Thompson &

Fraquelli 2014). The resulting data, denoted presearch data conditioning (PDC)

light curves, generally show much less scatter than the uncorrected data. Nonethe-

less, we opt to implement further data conditioning to minimize the spread in data,

especially in light of the model degeneracy issues raised in our synthetic data tests

(see Chapter 3).

We first remove any points flagged by the Kepler data pipeline as potentially

having sub-optimal quality (e.g., lack of fine pointing, cosmic ray event, etc.),

as well as any remaining non-finite flux values. As the targets we will fit have
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confirmed transiting planets, and thus published values for e, i, and Rp from

transit analyses, we calculate the durations and separation of the transit and

occultation, and excise these regions of the light curve. Since transit analysis

does not provide a well constrained e, we extend the calculated durations by a

fractional length to ensure the entire transit/occultation is fully removed.

To further remove any remaining long-term systematic trends, we fit a cubic

spline to each quarter of data, with knots every two orbital periods to minimize

astrophysical signal removal. We divide out the ratio of the spline over the median

of the spline, so as to preserve the same flux level. Removing short-term trends

that occur within a given orbit without simultaneously removing the phase curve

signal is incredibly difficult, so we opt to excise egregious orbits by sigma clipping.

We split each orbit into halves, and keep only those orbits for which the medians

of both halves and the median of the whole orbit lie within 2σ of the median for

that quarter.

We also sigma-clip on a point-by-point basis, removing data that lies more

than 3σ from its quarter’s median. If more than fifty percent of an orbit is

removed by this round of sigma clipping, we consider it a “bad” orbit, and remove

it entirely. We normalize each quarter by subtracting and then dividing by its

median. Finally, we bin the combined data from all quarters to 1/400th the

published orbital period, and phase fold over the published transit ephemeris

such that orbital phase φ = 0 corresponds to mid-transit.

4.2 Kepler-13b

Kepler-13b has one of the strongest photometric signals of the confirmed Kepler

exoplanets, so much so that Shporer et al. (2011) have shown it is detectable solely
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from its phase curve variations. Several analyses (e.g., Placek et al. 2014, Esteves

et al. 2013, Shporer et al. 2011) of its phase variations have been published,

making Kepler-13b a natural choice with which to test the accuracy of our model

and fitting formalism. Table 4.1 gives the published stellar parameters and orbital

period (derived from transit analysis) we use in our data reduction and fitting.

We also restrict the bounds of the inclination and planetary radius to 3σ about

the published values from transit analyses (see Table 4.1), as preliminary tests

consistently yielded inclinations that would prohibit a transit, as well as unrealistic

radius values. Bounds used for the remaining parameters are given in Table 4.2.

Parameter Published value Reference

M? [M�] 2.05 Szabó et al. 2011
R? [R�] 2.55 Szabó et al. 2011
Teff [K] 8500 Szabó et al. 2011
P [days] 1.7635877 Batalha et al. 2013
i [deg] 81.8± 0.2 Masuda 2015
Rp/R? 0.07799± 0.00020 Batalha et al. 2013

Table 4.1: Published values used in our data reduction and fitting for Kepler-13b.

Table 4.3 gives the results of model testing for Kepler-13b. Unlike the syn-

thesized planets, our fitting formalism returned more complicated combinations

of three and four effects as the top three most statistically-significant models. By

comparison, Placek et al. (2014) give Th+El+Do and Re+Th+El+Do as the fa-

vored models to describe Kepler-13b’s phase curve. The median values for the

fitted parameters for each model (see Table 4.4) generally agree well with previ-

ous phase curve analyses, summarized in Table 4.5. For each of our three most

statistically-significant models, all parameters except e and Tday agree to within

1−2σ of the corresponding values of each of the three published works. As each of

the publications in Table 4.5 uses different combinations of effects—Th+El+Do,
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Model parameters Bounds

e [0, 0.6]
ω [rad] [0, 2π]
M0 [rad] [0, 2π]

Mp [MJ] [0.1, 20]
Ag [0, 1]√
AgRp [RJ] [0, 10]

Tday [K] [0, 6000]

f0 [−1× 10−2, 1× 10−2]

Table 4.2: Parameter bounds used for fitting the Kepler light curves. Note that while
the i bounds are given in degrees, for fitting purposes, we sample cos i on [0, 1] to ensure
uniform spherical sampling.

Re+Th+El+Do, and Re+El+Do for Placek et al. (2014), Esteves et al. (2013),

and Shporer et al. (2011), respectively—we conclude there is significant model

degeneracy between these combinations.

Figures 4.1, 4.2, and 4.3, which plot the best-fitting models, further demon-

strate this degeneracy. Throughout all three cases, the overall shape of the com-

bined curve remains relatively constant, because swapping a unimodal reflection

curve for a unimodal thermal curve of the same amplitude does not dramatically

alter the composite light curve. Similarly, replacing either reflection or thermal

with a combination of the two, each with a depressed amplitude, yields a similar

shape. Indeed, our albedo and temperature values of the Re+Th+El+Do model

are lower than those of our three-effect models.

As previously mentioned, some of our eccentricity values disagree with those

of Placek et al. (2014). Our value from the comparable model (i.e., Th+El+Do)

agrees to within 3σ, however, the values from our other two models fall below 3σ

of Placek et al. (2014)’s values. As Szabó et al. (2011) argue for a circular orbit,
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our lower e values compared to Placek et al. (2014) do not seem problematic.

We also have discrepancies with Tday. While our values for temperature agree

within 1 − 2σ with those of Placek et al. (2014), they do not agree to within 3σ

of Esteves et al. (2013). A reason for this disagreement is not immediately clear,

however, that Esteves et al. (2013) model the occultation may provide additional

constraints on their temperature value. Our comparatively small error values for

temperature may also play a role in this discrepancy.

Model χ2
ν

Re+Th+El+Do 1.2640
Re+El+Do 1.4024
Th+El+Do 1.5289
Re+El 7.1069
Re+Th+El 7.1538
Th+El 7.2094
Re+Do 17.7702
Re+Th+Do 17.8883
Re 18.3903
Re+Th 18.5122
Th 33.0279
Th+Do 33.1369
El 48.7544
El+Do 49.1299
Do 94.6318
null 302.8698

(a)

Model χ2
ν

Re+El+Do 1.4024
Re+Th+El+Do 1.2640
Th+El+Do 1.5289
Re+El 7.1069
Th+El 7.2094
Re+Th+El 7.1538
Re 18.3903
Re+Do 17.7702
Re+Th 18.5122
Re+Th+Do 17.8883
Th 33.0279
Th+Do 33.1369
El 48.7544
El+Do 49.1299
Do 94.6318
null 302.8698

(b)

Table 4.3: Model testing results for Kepler-13b. (a) Models sorted by reduced chi-
square values. (b) Models and corresponding reduced chi-square values sorted by sta-
tistical significance, as given by the F-test.
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Parameter Best Median

Re+El+Do

e 0.03091 0.03096+0.00061
−0.00058

i [deg] 82.24 81.82+0.40
−0.41

ω [rad] 3.346 3.349+0.051
−0.051

M0 [rad] 1.322 1.318+0.050
−0.051

Mp [MJ] 7.716 7.721+0.050
−0.049√

AgRp [RJ] 0.6806 0.6810+0.0038
−0.0037

Ag — 0.1237+0.0015
−0.0015

Re+Th+El+Do

e 0.0385 0.0385+0.0013
−0.0012

i [deg] 81.62 81.77+0.43
−0.39

ω [rad] 3.383 3.380+0.041
−0.041

M0 [rad] 1.285 1.287+0.041
−0.040

Mp [MJ] 7.647 7.644+0.047
−0.046

Rp [RJ] 1.9355 1.9361+0.0099
−0.0101

Ag 0.0579 0.0593+0.0070
−0.0075

Tday [K] 3045 3035+49
−48

Th+El+Do

e 0.04656 0.04664+0.00093
−0.00093

i [deg] 81.21 81.69+0.45
−0.35

ω [rad] 3.358 3.367+0.034
−0.032

M0 [rad] 1.307 1.298+0.032
−0.034

Mp [MJ] 7.574 7.550+0.044
−0.044

Rp [RJ] 1.945 1.936+0.010
−0.010

Tday [K] 3331.2 3335.9+6.4
−6.5

Table 4.4: Results of the phase two runs for Kepler-13b for the most statistically
significant models. The second column gives the parameter values corresponding to the
best-χ2

ν fit over the ten runs. The third column gives the median parameter values with
1σ errors for the best-χ2

ν fit. Since the Re+El+Do model fits only the effective radius,
Ag was calculated using the fitted

√
AgRp and published Rp values.



4. Kepler K1 Planets 58

Parameter Placek et al. 2014 Esteves et al. 2013 Shporer et al. 2011

e 0.062± 0.005 — —
ω [rad] 3.42± 0.10 — —
M0 [rad] 1.23± 0.10 — —
Mp [MJ] 7.10± 0.60 7.95± 0.27 9.2± 1.1
Ag — 0.092+0.034

−0.041 —
Tday [K] 3492.4± 340.4 3558+53

−63 —

Table 4.5: Published phase curve analysis values for Kepler-13b.
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4.3 HAT-P-7b

Our fitting of HAT-P-7b (Kepler-2b) does not correspond to literature values

as well as our fit for Kepler-13b. Again, we “fixed” the inclination and planetary

radius to within 3σ of the published values from transit analyses (see Table 4.6);

however, the fitted values of the favored model (Re+El+Do) do not agree well

with published values (see Tables 4.8, 4.9). For instance, the planetary mass has

been inflated to over twice those of the published values. Figure 4.4 shows the

best-fitting model, which despite its unrealistic values, shows good agreement with

the data. We re-run our formalism on HAT-P-7b, but narrow the planetary mass

bounds to within 3σ of the published radial-velocity/transit mass (see Table 4.6).

The triangle plot for the best-fitting Re+El+Do model for these new bounds

is shown in Figure 4.5. While the PD is well constrained, the fitting routine

compensated for a lower, fixed planetary mass by increasing the eccentricity to

over 0.1, which is unrealistic in the case of HAT-P-7b. The fit also increased

the effective radius, which places our fitted albedo even further outside the range

given by Esteves et al. (2013).

We run the HAT-P-7b data a third time, now forcing the eccentricity to take

values between 0 and 0.05, as we observed no asymmetry in the temporal sepa-

ration of transit and occultation when reducing the data. Figure 4.7 shows the

triangle plot for the best-fitting Re+El+Do run in this limited eccentricity case,

which demonstrates the walkers building up against the upper e bound of 0.05 in

an attempt to unrealistically increase the eccentricity. Simultaneously, the effec-

tive radius increases, deviating further from the results of Esteves et al. (2013).

The corresponding plots of the best-fitting models are given in Figures 4.6 and

4.8, and show rather poor correspondence to the data.
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Parameter Published value Reference

M? [M�] 1.47 Pál et al. 2008
R? [R�] 1.84 Pál et al. 2008
Teff [K] 6350 Pál et al. 2008
P [days] 2.204737 Morris et al. 2013
i [deg] 83.111± 0.030 Morris et al. 2013
Rp/R? 0.07759± 0.00003 Morris et al. 2013
Mp [MJ] 1.776± 0.077 Pál et al. 2008

Table 4.6: Same as Table 4.1, but for HAT-P-7b.

Model χ2
ν

Re+El+Do 2.7745
Re+Th+El+Do 2.7931
Th+El+Do 2.8862
Re+El 3.2735
Re+Th+El 3.2958
Re+Do 3.3792
Re 3.3825
Re+Th+Do 3.4014
Th+El 4.1303
Th 4.2651
Th+Do 4.2793
Re+Th 4.4890
Do 6.2015
El 19.9684
El+Do 28.7026
null 110.4063

(a)

Model χ2
ν

Re+El+Do 2.7745
Re+El 3.2735
Re 3.3825
Re+Do 3.3792
Th+El+Do 2.8862
Re+Th+El+Do 2.7931
Re+Th+El 3.2958
Re+Th+Do 3.4014
Th 4.2651
Th+El 4.1303
Th+Do 4.2793
Re+Th 4.4890
Do 6.2015
El 19.9684
El+Do 28.7026
null 110.4063

(b)

Table 4.7: Same as Table 4.3, but for HAT-P-7b.
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Parameter Best Median

Re+El+Do

e 0.0320 0.0318+0.0041
−0.0037

i [deg] 83.092 83.110+0.062
−0.060

ω [rad] 4.352 4.353+0.091
−0.111

M0 [rad] 0.276 0.275+0.109
−0.088

Mp [MJ] 5.62 5.62+0.17
−0.17√

AgRp [RJ] 0.6625 0.6624+0.0066
−0.0068

Ag — 0.227+0.057
−0.028

Table 4.8: Results of the phase two runs for HAT-P-7b for the most statistically
significant model. The second column gives the parameter values corresponding to the
best-χ2

ν fit over the ten runs. The third column gives the median parameter values with
1σ errors for the best-χ2

ν fit. Since the Re+El+Do model fits only the effective radius,
Ag was calculated using the fitted

√
AgRp and published Rp values.

Parameter Placek & Knuth 2015 Esteves et al. 2013

M0 [rad] 4.9705± 0.0001 —
Mp [MJ] 1.66± 0.16 1.985± 0.070
Ag 0.088± 0.026 0.0299± 0.0041
Tday [K] 2859.0± 33.0 2784± 35

Table 4.9: Same as Table 4.5, but for HAT-P-7b.
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Figure 4.5: Triangle plot of the phase two run (fixed Mp) that yielded the best fit of
the Re+El+Do model for HAT-P-7b.
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Figure 4.7: Triangle plot of the phase two run (fixed Mp, e constrained from 0 to 0.05)
that yielded the best fit of the Re+El+Do model for HAT-P-7b.
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4.4 Kepler-5b

Fitting Kepler-5b with inclination and radius fixed (see Table 4.10) resulted

in a null detection; that is, the most statistically significant model was the null

model, consisting only of a variable flux offset. Such a result is reasonable when

one considers that the spread in χ2
ν values in Table 4.11 is less than two tenths.

Nonetheless, the null detection is disconcerting, considering the phase curve has

previously been detected and analyzed (Esteves et al. 2013).

Parameter Published value Reference

M? [M�] 1.374 Koch et al. 2010
R? [R�] 1.793 Koch et al. 2010
Teff [K] 6297 Koch et al. 2010
P [days] 3.548460 Koch et al. 2010
i [deg] 86.3± 0.5 Koch et al. 2010
Rp/R? 0.08195+0.00030

−0.00047 Koch et al. 2010
Mp [MJ] 2.114+0.056

−0.059 Koch et al. 2010

Table 4.10: Same as Table 4.1, but for Kepler-5b.

Irregardless of our formalism’s non-detection, we run phase two on the next

most significant model, a well as the Re+Th+El+Do model, the results of which

are given in Table 4.12. The albedos for both models, as well as the dayside

temperature for the four-effect model, agree to within 1σ with those given by

Esteves et al. (2013). Our value for planetary mass also agrees well with published

radial velocity values (see Table 4.10). However, the eccentricity, with a median

value of 0.392, is clearly unrealistic. Figures 4.9 and 4.10 shows the best-fitting

models, and offer insight into this inflated eccentricity. Around orbital phase

φ ≈ 0.1, a dip occurs in the data. To create such an asymmetry, the fitting

formalism increases the eccentricity.
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We re-run our formalism, but limit the e to take values between 0 and 0.05.

The median albedo value from the Re model essentially halves, while the albedo

value given by the Re+Th+El+Do model increases by a factor of over 1.5. The

Tday value given by the Re+Th+El+Do model also more than halves. However,

all these values still agree to within 1− 2σ of the published Esteves et al. (2013)

values, due in part to the their relatively large error bars (see Table 4.14). The

planetary mass also agrees well with the published RV value, in spite of the new

fitting bounds, which prevent the formalism from fully fitting the dip (see Figures

4.11 and 4.12).

Model χ2
ν

Th+El+Do 1.1259
Re+Do 1.1286
Re+Th+El+Do 1.1302
Re+Th+Do 1.1355
Re+Th 1.1428
Re+Th+El 1.1454
Re 1.1485
Th+El 1.1498
Re+El+Do 1.1518
Re+El 1.1521
Do 1.1583
Th 1.1620
Th+Do 1.1654
El 1.1740
El+Do 1.1852
null 1.2843

(a)

Model χ2
ν

null 1.2843
Re 1.1485
Do 1.1583
El 1.1740
El+Do 1.1852
Re+Do 1.1286
Re+El+Do 1.1518
Re+El 1.1521
Th 1.1620
Th+El+Do 1.1259
Re+Th 1.1428
Th+El 1.1498
Th+Do 1.1654
Re+Th+El+Do 1.1302
Re+Th+Do 1.1355
Re+Th+El 1.1454

(b)

Table 4.11: Same as Table 4.3, but for Kepler-5b.
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Parameter Best Median

Re

e 0.396 0.387+0.031
−0.039

i [deg] 86.9 86.3+1.0
−1.0

ω [rad] 5.01 5.08+0.19
−0.13

M0 [rad] 5.077 5.047+0.081
−0.097√

AgRp [RJ] 0.495 0.464+0.047
−0.054

Ag — 0.105+0.022
−0.025

Re+Th+El+Do

e 0.392 0.392+0.047
−0.045

i [deg] 85.52 86.37+0.98
−1.09

ω [rad] 4.55 4.66+0.25
−0.19

M0 [rad] 5.23 5.19+0.10
−0.12

Mp [MJ] 3.61 2.83+0.97
−1.39

Rp [RJ] 1.442 1.424+0.015
−0.013

Ag 0.002 0.028+0.034
−0.020

Tday [K] 2307 2239+73
−104

Table 4.12: Results of the phase two runs for Kepler-5b for the most statistically sig-
nificant model, as well as the four-effect model. The second column gives the parameter
values corresponding to the best-χ2

ν fit over the ten runs. The third column gives the
median parameter values with 1σ errors for the best-χ2

ν fit. Since the Re model fits
only the effective radius, Ag was calculated using the fitted

√
AgRp and published Rp

values.

Parameter Esteves et al. (2013)

Mp [MJ] 1.34+0.30
−0.31

Ag 0.065+0.032
−0.031

Tday [K] 2198+36
−35

Table 4.13: Same as Table 4.5 for Kepler-5b.
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Parameter Best Median

Re

e 0.050 0.033+0.012
−0.018

i [deg] 86.94 86.27+0.99
−1.02

ω [rad] 5.82 5.46+0.54
−0.77

M0 [rad] 5.02 5.22+0.65
−0.59√

AgRp [RJ] 0.347 0.333+0.036
−0.042

Ag — 0.054+0.012
−0.014

Re+Th+El+Do

e 0.041 0.031+0.014
−0.018

i [deg] 86.9 86.3+1.0
−1.0

ω [rad] 5.90 5.41+0.57
−0.80

M0 [rad] 4.34 4.90+0.78
−0.58

Mp [MJ] 2.40 2.28+0.61
−0.64

Rp [RJ] 1.408 1.425+0.014
−0.013

Ag 0.017 0.044+0.013
−0.013

Tday [K] 2020 940+710
−650

Table 4.14: Results of the phase two runs (e limited from 0 to 0.05) for Kepler-5b for
the most statistically significant model, as well as the four-effect model. The second
column gives the parameter values corresponding to the best-χ2

ν fit over the ten runs.
The third column gives the median parameter values with 1σ errors for the best-χ2

ν

fit. Since the Re model fits only the effective radius, Ag was calculated using the fitted√
AgRp and published Rp values.
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4.5 Kepler-6b and Kepler-8b

Our fits for Kepler-6b and Kepler-8b demonstrate problems similar to those

experienced by HAT-P-7b and Kepler-5b. We therefore present a limited sum-

mary of the results to avoid redundancy. Tables 4.15 and 4.16 give the published

stellar parameters and transit-derived parameters we use in our fitting, as well as

the radial velocity-determined mass for comparison. Similar to Kepler-5b, both

Kepler-6b and Kepler-8b were null detections. We present results of phase two of

our fitting formalism for the four-effect model in Tables 4.17 and 4.18, for which

we fixed the inclination and planetary radius as in previous cases. For Kepler-6b,

the median values for both eccentricity and planetary mass are inflated, while

only the eccentricity is inflated in the case of Kepler-8b. In both cases, Ag and

Tday agree to within 1σ to those values given by Esteves et al. (2013) (see Tables

4.19 and 4.20).

Parameter Published value Reference

M? [M�] 1.209 Dunham et al. 2010
R? [R�] 1.391 Dunham et al. 2010
Teff [K] 5647 Dunham et al. 2010
P [days] 3.234723 Dunham et al. 2010
i [deg] 86.8± 0.3 Dunham et al. 2010
Rp/R? 0.09829+0.00014

−0.00050 Dunham et al. 2010
Mp [MJ] 0.669+0.025

−0.030 Dunham et al. 2010

Table 4.15: Same as Table 4.1, but for Kepler-6b.



4. Kepler K1 Planets 79

Parameter Published value Reference

M? [M�] 1.213 Jenkins et al. 2010
R? [R�] 1.486 Jenkins et al. 2010
Teff [K] 6213 Jenkins et al. 2010
P [days] 3.52254 Jenkins et al. 2010
i [deg] 84.07± 0.33 Jenkins et al. 2010
Rp/R? 0.09809+0.00040

−0.00046 Jenkins et al. 2010
Mp [MJ] 0.603+0.13

−0.19 Jenkins et al. 2010

Table 4.16: Same as Table 4.1, but for Kepler-8b.

Parameter Best Median

Re+Th+El+Do

e 0.259 0.210+0.061
−0.075

i [deg] 86.88 86.83+0.61
−0.64

ω [rad] 3.45 3.44+0.48
−0.53

M0 [rad] 0.62 0.62+0.39
−0.33

Mp [MJ] 5.3 5.0+1.1
−1.3

Rp [RJ] 1.3143 1.3245+0.0088
−0.0101

Ag 0.000 0.018+0.025
−0.013

Tday [K] 2120 2010+130
−240

Table 4.17: Results of the phase two runs for Kepler-6b for the four-effect model.
The second column gives the parameter values corresponding to the best-χ2

ν fit over the
ten runs. The third column gives the median parameter values with 1σ errors for the
best-χ2

ν fit.
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Parameter Best Median

Re+Th+El+Do

e 0.29 0.22+0.12
−0.10

i [deg] 83.21 84.09+0.68
−0.69

ω [rad] 2.61 2.65+0.61
−0.48

M0 [rad] 1.88 1.82+0.27
−0.44

Mp [MJ] 1.48 1.42+1.09
−0.85

Rp [RJ] 1.412 1.417+0.013
−0.013

Ag 0.039 0.058+0.029
−0.030

Tday [K] 2010 1680+390
−850

Table 4.18: Results of the phase two runs for Kepler-8b for the four-effect model.
The second column gives the parameter values corresponding to the best-χ2

ν fit over the
ten runs. The third column gives the median parameter values with 1σ errors for the
best-χ2

ν fit.

Parameter Esteves et al. (2013)

Mp [MJ] 1.02± 0.40
Ag 0.038± 0.028
Tday [K] 1829± 25

Table 4.19: Same as Table 4.5, but for Kepler-6b.

Parameter Esteves et al. (2013)

Mp [MJ] 1.35± 0.39
Ag 0.098± 0.036
Tday [K] 2066± 60

Table 4.20: Same as Table 4.5, but for Kepler-8b.
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4.6 Analysis

Our analyses of Kepler-13b, HAT-P-7b, and Kepler-5b reveal several inter-

esting issues with out fitting formalism. Perhaps the most significant is the null

detection of a star system with a known planetary light curve (i.e., Kepler-5b).

Multiple factors may influence this outcome. For instance, it is possible our data

reduction detrends too far, decreasing the amplitudes of the astrophysical phase

curve signals. The published detrended light curve of Kepler-5b is certainly less

pronounced than either of the other two planets we tested (cf. Placek et al. 2014,

Placek & Knuth 2015, Esteves et al. 2013). Perhaps the spline method we used

had a greater impact on Kepler-5b, which resulted in any variations having am-

plitudes on order of the noise values. We may also try another statistical test for

comparing models’ goodness of fits. The F-test may simply be too stringent in its

application of Occam’s razor.

Another interesting problem we encounter is the inflation of the eccentricity,

again, for Kepler-5b. As previously mentioned in the eponymous section, we

attribute the inflation in eccentricity to the sharp dip in the reduced light curve

of Kepler-5b. A similarly obvious deviation is not apparent in the corresponding

light curve from Esteves et al. (2013) (see Figure 4.13). This lends credence to

the notion that the data reduction is culpable for these fitting issues, however, it

is worth noting that all of the other fitted parameters agree with those published

by Esteves et al. (2013).

The underlying cause of the planetary mass inflation in the case of HAT-P-7b,

followed by the e inflation when the mass was “fixed” is less obvious. Comparing

the plots of the best-fitting Re+El+Do models for that planet, it is clear that

the asymmetric bimodality of the data is well replicated in Figure 4.4, where the
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The Astrophysical Journal, 772:51 (14pp), 2013 July 20 Esteves, De Mooij, & Jayawardhana

Figure 1. Left and right panels contain the binned and phase-folded transit light curves and phase curves, respectively. Overplotted on each is our best-fit model with
the residual plotted underneath. For Kepler-5, Kepler-6, and Kepler-8, the transit bin size is 30 s while the phase curve bin sizes are 85, 78, and 72 minutes, respectively.

is blocked as it passes behind its host star; (3) Fd, the Doppler
boost caused by the host star’s changing radial velocity; and
(4) Fe, the ellipsoidal variations resulting from tides on the star
raised by the planet. Each of these components is phase (φ)
dependent with φ running from 0 to 1 and mid-transit occurring
at φ = 0. The change in brightness of the planet–star system as
a function of phase can then be described by

∆F

F
= f0 + Fecl(φ) + Fp(φ) + Fd(φ) + Fe(φ), (1)

where f0 is an arbitrary zero point in flux. The details of phase
curve model fit are the same as described in Section 3.1.

3.3. Secondary Eclipse

Since each of these systems appears to have a secondary
eclipse centered on φ = 0.5, we assume that the orbits have
zero eccentricity and model the secondary eclipse using the
formalism from Mandel & Agol (2002) for a uniform source.

3

Figure 4.13: Data and best-fitting model for Kepler-5b from Esteves et al. (2013).

confluence of ellipsoidal variations and Doppler beaming causes one peak to be

stronger than the other. Fixing the mass at the lesser, true value (see Figure

4.6) forces the ellipsoidal and Doppler amplitudes to lessen, causing less of an

asymmetry in the strengths of the phase curve peaks. The fitting routine seems

to attempt to compensate for this by increasing the eccentricity, thereby flattening

the peak of the reflection curve. This cannot adequately reproduce the asymmetry,

however, and both the graph of model overplotted on the data, and the graph of

the residuals, indicate a poor correspondence. Figure 4.8 further demonstrates

this. The fitting routine increases the eccentricity as far as the bounds allow,

which is now severely restricted. Consequently, the reflection curve is even more

unimodal, and the fit poorer.

Perhaps the data reduction also causes the mass inflation; however, compar-

ing our reduced data for HAT-P-7b with that of Esteves et al. (2013) indicates

that apart from a different amount of binning, the overall phase curve shapes and

amplitudes are rather similar (see Figure 4.14). This indicates the data reduc-
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tion cannot be the primary cause of the planetary mass/eccentricity inflation for

HAT-P-7b. As the amplitudes of the ellipsoidal variations feature in this fitting

dilemma, another possibility is that the gravity-darkening β term that contributes

to the ellipsoidal amplitude is improperly calculated. Our rather simple method

for calculating this leading coefficient may not be adequate; for instance, Esteves

et al. (2013) use both gravity- and limb-darkening terms in their determination of

the ellipsoidal amplitude. On the other hand, the method used by Placek et al.

(2014), upon which we base our calculation, accurately fits the planetary mass for

HAT-P-7b (Placek & Knuth 2015). Clearly then, further investigation is required

to determine how to improve the accuracy of our fitting results.
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Figure 4.14: Our reduced data for HAT-P-7b (black) overplotted with that of Esteves
et al. (2013) (red).



Chapter 5

Conclusion

Astronomy has progressed substantially from the time of Albertus Magnus, to

the point that we can now decisively assert there are in fact many worlds, both

within and beyond our solar system. We have shown it is feasible to characterize

these exoplanets by analyzing their phase curves, the small scale variations in

a star-exoplanet system’s light curve that occur as the exoplanet orbits. This

in itself is a rather impressive development, as the precision necessary to do so

has only recently become available for large numbers of stars with the advent of

Kepler.

While this method holds great potential, we encountered several limitations

that must be considered. One of the most significant are the major degenera-

cies between different models, as well as individual parameters. We have shown

that for certain planet’s light curves, our fitting formalism will prefer a single-

component model that grossly exaggerates certain parameters. We have also seen

certain parameters—namely, Rp, Ag, and Tday—become degenerate, where a data

set can be equally well fit by altering any one of the three. By using prior knowl-

edge from other exoplanet characterization techniques to fix, or at least narrowly

constrain, certain parameters, we can somewhat mitigate these issues; however,

degeneracy still remains, and the number of truly free parameters in our fit de-

creases.
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We also suspect data reduction routines introduce artifacts into the light

curves, or detrend them too far, thereby removing astrophysical signals. We

may need to revaluate our expectations of what constitutes acceptable spacecraft

systematics, in light of the introduction of significant reduction systematics. A

wider spread in the light curve courtesy of Kepler may indeed be preferable to

severe fluctuations in the data due to our reduction routine.

Despite these limitations, we still see phase curve analysis as a viable method

to characterize exoplanets. In addition to minimizing the impact of the afore-

mentioned limitations, there are other improvements we can make to our analysis

technique. We also forsee specific applications that have the potential to signifi-

cantly impact the field of exoplanets.

5.1 Future work

5.1.1 Incorporating transits and occultations

Our phase curve model currently only considers the out-of-transit and out-of-

occultation phase variations. In our fitting, therefore, we included information

from previous transit fits by narrowing the bounds of the fitting routine. A more

robust and self-consistent method for including transit data is to actually fit the

transit simultaneously with the phase curves. A transit fit would easily determine

i and Rp. If the light curve also contains an occultation, the separation between

these two events determines very accurately the eccentricity of the orbit. Expand-

ing the light curve model would thus determine very well several parameters we

have tried to constrain in a rather ad hoc method.

Fitting the occultation would also provide further constraints on the reflection

and thermal effects. Specifically, the depth of the occultation is equal to the
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combined reflected and thermal amplitudes at full phase. While this will not

assist in disentangling the two effects, it will resolve any degeneracies between

reflection/thermal and ellipsoidal/beaming components.

5.1.2 Non-transiting planets

As alluded to in Chapter 1, a rather exciting prospect for phase curve analysis

is its potential to detect non-transiting exoplanets, thereby allowing combined

radial velocity/photometric studies of the vast majority of planets in the Universe.

For these cases, we will need a quick, efficient method to determine from a light

curve whether there is a planetary signal. An obvious choice would be some

sort of periodogram analysis, since a phase curve—albeit a weak effect compared

to a transit—should produce a peak at the planet’s orbital period. Figure 5.1

is a basic comparison between the periodogram signals of a simple box transit

model of an exoplanet similar to Kepler-13b and the phase curve variations of

that same planet inclined such that it no longer transits. As expected, the raw

value of the maximum signal for the non-transiting planet is weaker than that of

the transiting planet, in this case, by over a factor of 400. The aliasing seems to

be less pronounced for the non-transiting case, for which we have yet to develop

an explanation. In the near future, we plan to further develop such a method for

detecting candidate non-transiting planets for followup phase curve analysis.

5.1.3 Future targets: K1 and K2

As the K1 mission targeted over 100,000 stars, there is a bounty of light

curves through which to search for phase curves. Rather than simply feeding

the entire K1 database through our fitting formalism, we envisage a few differ-
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Figure 5.1: Periodograms of a box-model transit (top panel) and phase variations
(bottom panel) for a hot Jupiter similar to Kepler-13b that transits edge-on and does
not transit, respectively. The signals are normalized to show the relative strengths of
the aliasing.

ent, more targeted approaches. Perhaps the most obvious is to apply a future

phase curve/transit/occultation fitting algorithm to all known Kepler transiting

exoplanets, with the hope of providing further characterization of already studied

systems. Assuming we are able to devise a method to flag potential non-transiting

exoplanets, a perhaps more fruitful endeavor would be to analyze the hottest Ke-

pler targets for signs of both transiting and non-transiting exoplanets. Hot targets

are particularly intriguing in the case of transiting planets because they are most

amenable to followup atmospheric spectroscopic observations, in that the higher

stellar flux presents an opportunity to achieve lower signal to noise. For non-

transiting planets, hot targets will likely produce phase variations with greater

amplitudes, enabling easier detection.

The K2 phase of the Kepler mission will likely continue to take data for the
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Figure 5.2: K2 light curve of the super-Earth discovered by Vanderburg et al. (2015),
which shows out-of-transit phase variations.

next couple of years, until its fuel stores are exhausted. In the meantime, as it

traces the ecliptic plane, its overall field of view has expanded beyond the original

115 deg2 patch of sky selected for K1. This means more opportunities to detect

and characterize exoplanets, both from transits and via their phase curves. In

fact, the previously mentioned K2 planet discovery made by Vanderburg et al.

(2015) shows signs of phase effects (see Figure 5.2). We are hopeful, then, that for

the foreseeable future, the archive of precision light curves will continue to grow,

and with it, the number of exoplanets with characterizable light curves.
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