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But as soon as somebody demonstrates the art of flying, settlers from

our species of man will not be lacking. Who would once have thought

that the crossing of the wide ocean was calmer and safer than of the

narrow Adriatic Sea, Baltic Sea, or English Channel? Given ships or

sails adapted to the breezes of heaven, there will be those who will not

shrink from even that vast expanse. Therefore, for the sake of those

who, as it were, will presently be on hand to attempt this voyage, let us

establish the astronomy, Galileo, you of Jupiter, and me of the moon.

–Johannes Kepler

Dissertatio Cum Nuncio Sidereo, 1610

Translated by Hellman (1965)
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Chapter 1

Introduction

Cosmological models and observations tell us the universe is 69% dark energy

and 26.8% dark matter (Planck Collaboration et al. 2014), which we can neither

see nor interact with. The remaining 4.9% is baryonic matter, which composes

billions of galaxies, each a collection of billions of stars. Our star, the Sun, rep-

resents 99.8% of the mass in our solar system (Woolfson 2000). Jupiter’s mass

composes over half of the remaining 0.2%, leaving less than 0.1% for the other

seven planets.

The galaxies are relatively small when viewed at extensive scales, at which

point they appear as a supercluster composed of thousands of gravitationally

bound galaxies. Our galactic supercluster is called Laniakea (in Hawaiian: lani,

heaven; akea, spacious, immeasurable) (Tully et al. 2014). Each galaxy is com-

posed of billions of tiny specks called stars, which are orbited by astonishingly

smaller objects called planets. These smallest of specks are some of the most

interesting objects in the universe. In our solar system alone, they foster the

country-sized extinct volcanoes of Mars, the cold oceans of Europa and Ence-

ladus, the fiery atmosphere of Venus, the Earth sized hurricanes of Jupiter, the

hydrocarbon lakes and rivers of Titan, the majestic rings of Saturn, and the fragile

life of Earth. Planets are therefore worth searching for around other stars in order

to expand our knowledge of planetary diversity and the prevalence of planetary
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systems in general. However, their minuscule size and relatively cool temperatures

make them di�cult objects to study.

Planets are interesting for the same reason that they are di�cult to study –they

do not generate and radiate energy like stars, but absorb and metabolize it, even-

tually radiating the energy back at di↵erent wavelengths. Their lack of significant

emission makes them di�cult to directly image even with our largest telescopes.

Exoplanet host stars must therefore be used in order to detect their surrounding

planets. Two methods–radial velocity and transit analysis–have dominated exo-

planet science for decades. At the end of the 20th century and first decade of the

21st century, radial velocity detections dominated the field as the most fruitful

discovery technique, and still has discovered more long period planets than any

other method (Akeson et al. 2013). However, with the launch of the Kepler Space

Telescope in 2009 (Haas et al. 2010), the transit method has discovered thousands

of exoplanets within the last six years (Akeson et al. 2013). Humanity now knows

that most stars possess planetary systems and that Earth-sized planets are more

common than larger planets (Fressin et al. 2013), unlocking seemingly infinite

possibilities for planetary diversity and, probably, for extraterrestrial life.

1.1 Techniques for discovering exoplanets

1.1.1 Radial velocity technique

Johannes Kepler, the prominent German astronomer for whom the space tele-

scope is named, was the first human to accurately describe the movements of

the planets in the Solar System using empirical mathematical laws (Kepler 1609).

The first of these laws states that the orbit of any planet is an ellipse with the

Sun located at one of two foci. Kepler’s description preceded the development of
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Newtonian mechanics (Newton 1687) and advances in telescope technology beyond

Galileo’s (Galilei 1610), so this simplification was su�cient to match observations.

However, in reality, Newton’s Third Law of Motion tells us that for every action

there is an equal and opposite reaction (Newton 1687). Both objects orbit one

center, the system’s center of mass, which is within the Sun’s volume or near it

because of its greater mass. Therefore, while the Sun exerts a gravitational force

on a planet, driving its orbit, the planet exerts a gravitational force on the star,

causing it to orbit in a smaller ellipse of equal eccentricity and period. This “wob-

ble” can be measured via redshift and blueshift, which are caused by the Doppler

e↵ect (Doppler 1842). As a star moves toward an observer, its light is shifted

toward the blue (shorter wavelengths and higher frequencies), and while it moves

away light is shifted towards the red (longer wavelengths and lower frequencies).

This is only possible when the star’s orbit is inclined with respect to the observer

(0� < i  90�), as illustrated in Figure 1.1.

With the appropriate inclination, spectroscopy can be used to measure the

shape and distance of an exoplanet’s orbit, as well as a minimum planet mass

M
p

sin(i). This final measurement inherently contains a parameter degeneracy, as

the values ofM
p

and i cannot be di↵erentiated empirically. The following equation

is used to relate the aforementioned parameters to radial velocity measurements

(Lovis & Fischer 2010):

K⇤ =

✓
G

1� e2

◆1/2

M
p

sin(i)M�1/2
⇤ a�1/2,

whereK⇤ is the radial velocity semi-amplitude, G is the gravitational constant, e is

eccentricity, M
p

and M⇤ are planetary and stellar mass, and a is semi-major axis.

The equation illustrates the interconnectivity of M
p

and i in the radial velocity
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Figure 1.1: The star’s spin axis is perpendicular to the orbital plane (yellow), which
is tilted a certain number of degrees relative to the observer, called the inclination i.
Inclination is 90� for an edge on orbit and 0� for a face on orbit. The celestial body, in
this case an exoplanet, orbits elliptically on this orbital plane, following the star’s spin.
True anomaly (⌫ here) indicates the location of an object in its orbital ellipse relative
the the foci of the system’s center of mass. In the case of our Solar System, this foci
would be within or very near to the volume of the Sun, but not at the exact center.
The exact center of mass di↵ers widely among star systems, therefore this classification
of orbital location is convenient for astronomers. Argument of periapsis ! documents
the position of the planet relative to its pericentre, which is the point in its orbit when
its distance from the star is at minimum. From Lasunncty (2007).
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technique, which generates an inherent degeneracy between these two parameters.

1.1.2 Transit technique

Transits occur when an exoplanet crosses in front of its host star relative to

the observer’s line of sight. The planet blocks a measurable amount of flux from

the star in a periodic manner. If the host star radius is known, the depth of

the transit can be related to planet radius by the following equation (Seager &

Mallén-Ornelas 2003):

�F =
F
notransit

� F
transit

F
notransit

=

✓
R

p

R⇤

◆2

.

Provided multiple transits are observed, the time between transits gives the planet’s

orbital period, as shown in Figure 1.2. The smaller dimming e↵ect at a phase of

� = 0.5, or shifted slightly from � = 0.5 based on eccentricity (e) and argument

of periastron (!), is called a secondary eclipse or occultation, which occurs when

the planet passes behind the host star relative to the observer’s line of sight.

1.1.3 Secondary Eclipse

Kepler measures the flux of an entire star-planet system. While the vast

majority of the flux is contributed by the star, thermal emission from the planet

also contributes. The degree of planet flux contribution depends on the planet’s

temperature and size, so this e↵ect di↵ers in magnitude between exoplanetary

systems. The planetary equilibrium temperature, T
eq

, is calculated as (López-

Morales & Seager 2007)
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T
eq

= T⇤

✓
R⇤

a

◆1/2

[f(1� A
B

)]1/4,

where T⇤ is the stellar temperature; R⇤ is the stellar radius, a is the semi-major

axis, and A
B

is the Bond albedo, which is defined by A
B

= (3/2)A
g

, where A
g

is

the geometric albedo. The eclipse depth, F
ecl

, is given as (Esteves et al. 2015)

F
ecl

[�] =

✓
R

p

R⇤

◆2 R B
�

[T
eq

]G[�]d�R
(G[�]F

�

d�)
+ A

g

✓
R

p

a

◆2

where B
�

is the Planck function as a function of T
eq

, G[�] is the Kepler transmis-

sion function, F
�

is the stellar flux computed using the NEXTGEN model spectra

(Hauschildt et al. 1999), and A
g

is the geometric albedo.

In addition to constraining thermal emission and reflection, secondary eclipse

analysis allows for better constraint of eccentricity, as eccentric orbits can shift

the center of the eclipse from � = 0.5 depending on the argument of periastron.

This additional lightcurve analysis makes the transit technique significantly more

robust.

1.1.4 Transit Spectroscopy

Exoplanet transits can produce di↵erent transit depths for the same planet

when viewed at di↵erent wavelengths. Imagine Earth viewed as a transiting ex-

oplanet by an observer in another star system. Through most wavelengths, only

the rock and water of Earth would block out the Sun’s light. However, if the

transit is viewed through the wavelengths of blue visible light, the Earth’s at-

mosphere would also block the Sun’s light, because it is optically thick at those

wavelengths due to Rayleigh scattering. The transit depth at these wavelengths
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Figure 1.2: Reduced Kepler data for HAT-P-7 b. This target has a very pronounced
secondary eclipse and transit. Phase curves are too subtle an e↵ect to be seen at this
scale. The transit occurs at phase � = 0, 1, 2 while the secondary eclipse occurs at
phase � = 0.5, 1.5.
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would be deeper than at other wavelengths, which would give information regard-

ing the density, temperature, and composition of Earth’s atmosphere. This same

principle can also be applied to other types of atmospheres, such as exoplanetary

gas giants, though the definition of where the atmosphere begins is somewhat

di↵erent in this scenario. In the following equations used to model exoplanet at-

mospheres, k is the Boltzmann constant, T is the estimated temperature of the

planet, µ is the mean molecular weight of the atmosphere, and g is the planet’s

gravity on a logarithmic scale. The mean molecular weight describes the mean

mass of particles in an atmosphere. The atmospheric scale height, H, is a constant

that describes the radial distance over which the atmosphere’s density decreases,

calculated as

H =
kT

µg
.

It is used to obtain the actual atmospheric height, Z, calculated as (Lecavelier

Des Etangs et al. 2008)

Z(�) = Hlog

 
P
o

�(�)

⌧
eq

✓
2⇡R

p

kTµg

◆1/2
!

where P
o

is the pressure at the atmosphere’s zero altitude point, �(�) is the

scattering cross section of the atmosphere, which changes with wavelength, ⌧
eq

is

the optical depth at the zero altitude point, and R
p

is the planet’s radius. With

knowledge of the atmospheric height, the planet’s radius with the atmosphere as

a discrete contributing component is described as (Lecavelier Des Etangs et al.

2008)

R
p+z

(�) = R
p

+ Z(�)
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where Z(�) changes as �(�) changes when observing through di↵erent wave-

lengths. As such, the e↵ective planetary radius di↵ers with wavelength, which

produces a detectable change in transit depth, �F (�), defined as:

�F (�) =

✓
R

p+z

(�)

R⇤

◆2

where R
p+z

(�) is the planetary radius including the atmosphere. d�F

d�

describes

the behavior of flux change with respect to wavelength and can be used to obtain

an estimate of an exoplanet atmosphere’s mean molecular weight and temperature

by comparison with spectroscopic data from observations. Because it is caused

by Rayleigh scattering, this e↵ect is useful primarily in visible to near-infrared

wavelengths, as shown in Figure 1.3.

Multiwavelength spectroscopy is not possible with Kepler, so most exoplanet

atmosphere studies are conducted with other space-based or ground-based tele-

scopes.

1.1.5 Phase Curve Analysis

During the first stages of the Kepler mission, scientists actively analyzed

lightcurves searching solely for transits. Discovering one was doubtlessly an im-

pressive feat. In modern Kepler data analysis, transits are regarded as large and

obvious features that clearly indicate the presence of an extrasolar planet. Phase

curves are now regarded as the subtle signals fit only by models of the highest

precision. They are created by a combination of reflected light and thermal emis-

sion from the planet, as well as the gravitational e↵ects of ellipsoidal variations

and Doppler boosting.

Reflected light is a function of the geometric albedo of the exoplanet’s at-
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Figure 1.3: This model spectrum illustrates the change in transit depth with respect
to wavelength. Using data from wavelengths higher than 1 µm, it is di�cult to tell the
di↵erence between two model atmospheres with extremely di↵erent bulk CO2 content
(0.4% vs 95%). However, the slope of the Rayleigh scattering is distinct for both atmo-
spheres. Using high-resolution spectroscopy to observe Rayleigh scattering in exoplanet
atmospheres is therefore an e↵ective means of estimating an atmosphere’s temperature
and mean molecular weight, which allows for characterization of atmospheric chemistry.
From Benneke & Seager (2012).
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mosphere, which is a valuable probe of atmospheric constituents. The thermal

emission phase curve shape is nearly identical to the reflected light phase curve

shape in most systems, but the amplitudes of the curves are used to determine

which source is contributing the most to the overall phase shape. Additionally,

the location of maximal thermal emission from the planet may not be the same as

the substellar point, which describes the point on the planet receiving the most

direct flux from the star. If this is the case, exoplanetary winds of extremely

high velocities, which transport this heat from the hot zone to cooler parts of the

planet, can be measured (Cowan & Agol 2011). The gravitational phase e↵ects,

ellipsoidal variations and Doppler beaming, provide direct constraints of an exo-

planet’s mass. In radial velocity analysis, measurements of an exoplanet’s mass

are degenerate with the system’s inclination, therefore this is a valuable constraint

made possible by phase curves.

The task of phase curve models is to tease out the relative contribution of

each e↵ect, a process that characterizes the exoplanet. Phase curves allow us

to determine exoplanet atmosphere characteristics using single-band photometry.

Furthermore, they allow scientists to circumvent the mass-inclination parameter

degeneracy that is present in radial velocity analysis. An integrated model that

characterizes the transit, secondary eclipse, and phase curves of an exoplanetary

system is therefore the most powerful tool for Kepler data analysis. This thesis

centers around the creation of this model.

1.2 Kepler

Launched in 2009, the Kepler space telescope remains the most important and

iconic instrument in the history of exoplanet science. Its purpose is to detect and
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characterize transiting exoplanet systems within its 115� field of view, with par-

ticular interest in exoplanets orbiting in their star’s habitable zone. The mission

has been a tremendous success thus far, detecting over 1000 confirmed planets

and over 3000 exoplanet candidates (Akeson et al. 2013), some Earth-sized and

within their star’s habitable zone. Failure of two of four reaction wheels on the

spacecraft stratified the mission into two distinct phases: K1 and K2 (Howell

et al. 2014). K1 denotes the time from launch to second wheel failure in May

2013. The spacecraft observed a single patch of sky for this entire period. Figures

1.4 and 1.5 show the spatial distribution of stars with orbiting exoplanets discov-

ered by Kepler. Figure 1.6 shows the distribution of stars with known exoplanets

in the galaxy, including those not discovered by Kepler.

The K2 mission uses pressure from solar radiation to balance the telescope

in lieu of two reaction wheels. Because Kepler is in an Earth trailing orbit, it

must continuously adjust itself to maintain proper orientation relative to the Sun,

meaning its field of view changes approximately every 83 days, 75 of which are

dedicated to science. Its fields of observation are solely on the ecliptic plane.

Though K2 data has lesser photometric precision, its unexplored fields of view

o↵er new opportunities for exoplanet discoveries.

DuringK1, the telescope took both long cadence (30 minute) and short cadence

(30 second) exposures using a 42 CCD photometer with a full bandpass of 348-

970 nm and half-maximum bandpass of 435-845 nm (Van Cleve et al. 2009). K2

uses the remaining 40 CCD modules to observe 105� of sky, collecting data at 30

minute and 1 minute cadences (Howell et al. 2014). K1 and K2 data precision

are compared in Figure 1.7. While its data is less precise and does not cover a

single area for more than 75 scientifically dedicated days, K2 has the potential to

continue the strong momentum of space based exoplanet science.
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Figure 1.4: The illuminated stars host exoplanets, all of which were discovered by
Kepler. The imprint of Kepler ’s 42 CCD photometer is left upon the sky, as it represents
our primary source of exoplanet discoveries. For perspective, this image is zoomed out
from the Solar System approximately 1 light day. The South poles of the Sun and
planets are pointing out of the page, thus the planets would be rotating clockwise from
this perspective. From NASA’s Eyes on Exoplanets, Biferno A. (2015).
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Figure 1.5: Zoomed out approximately 900 light years from the Solar System. The
Sun’s North-South axis points 90� away from the observer from this perspective. At
this angle, the conical shape of the 3D distribution of exoplanets discovered by Kepler
becomes apparent. This is because the same solid angle of sky contains a greater volume
of space farther away from the observer, which means the CCD detects a wider physical
distribution of stars that are farther away. As such, the field of view extends as a cone
with the Sun at the cone’s very tip. From NASA’s Eyes on Exoplanets, Biferno A.
(2015).

Figure 1.6: Zoomed out approximately 100,000 light years from the Solar System.
This shows the distribution of stars with discovered exoplanets in our galaxy. The
“peninsula” of illuminated stars extending toward the top of the figure are the Kepler
discoveries. The other “peninsula” extends towards the galactic center. There are
billions of stars within our galaxy, but all discovered exoplanets are confined to within
1000 light years of the Sun. The surface has just been scratched for galactic exoplanet
discovery. From NASA’s Eyes on Exoplanets, Biferno A. (2015).
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Figure 1.7: K2 data precision compared to Kepler data precision. Both lightcurves
are from a 12th magnitude target. K2 demonstrated a precision of 82 ppm during its
2013 December test. From Howell et al. (2014).

1.3 The value of exoplanet science

Characterizing the diversity of existing planets allows us to place our world in

the context of other worlds. Humanity is distinct from all other species of crea-

ture because the globalization of civilization allows us to analyze ourselves with

awareness of the surrounding world beyond our immediate sensory instruments.

A civilization’s maps define their breadth of awareness regarding their surround-

ings. Only now that we have precisely characterized the Earth can we seek a truer

understanding of our actual relationship with it. It becomes apparent that we are

no longer isolated nations refining their maps, but an entire species that has been

granted the planetary conditions for genetic development against significant odds.

Self-awareness seems to have developed on the fascinating debris of stars. Though

this debris is di�cult to study, our species has finally developed the wisdom and

technology necessary to evolve our planetary map craft to a galactic scale.

Amidst this map making, we, like our exploring ancestors, may encounter
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other beings we were previously unaware of. At first we may only be able to

see biochemical signatures in their atmospheres, but exoplanet science has the

potential to radically change our understanding of the prevalence of life in the

galaxy. While we will certainly explore the four currently favored life hosting

bodies in the solar system–Europa, the Martian subsurface, Titan, and Enceladus–

the diversity of potential targets for exoplanetary life is not quantifiable. As we

continue to characterize smaller, more Earth-like worlds with increased precision,

our knowledge of life could be revolutionized. We can only wait and see what the

future holds.



Chapter 2

Modeling

The purpose of our model is to theoretically predict the lightcurve of an ex-

oplanetary system based on that system’s specific characteristics. We model the

transit, which is the dominant feature in the lightcurve, as well as the secondary

eclipse and phase curves, which are much more subtle e↵ects. Precisely modeling

each of these features allows us to obtain valuable information regarding planetary

radii, masses, orbits, temperatures, and albedos.

2.1 Basic Equations

Modeling is simply the theoretical calculation of a particular e↵ect based on

a series of well characterized equations that describe the behavior of that system.

In our particular case, we have a series of equations that describe the three dimen-

sional elliptical motion of the exoplanet around its host star. These are coupled

to a series of equations that use exoplanet characteristics such as radius, mass,

temperature, and albedo to calculate the amount of flux from the star blocked

by the planet during transit, the amount of flux from the planet blocked by the

star during secondary eclipse, and the amount of flux contributed by the thermal,

reflective, ellipsoidal variations, and Doppler beaming phase e↵ects. With this

extensive series of coupled equations, our model can predict the flux received over

time from an exoplanetary system with specific characteristics. While all models
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are imperfect in some form, many are accurate enough to provide extremely valu-

able information. In our case, the combined transit, secondary eclipse, and phase

curve model is accurate enough to model even the most subtle flux e↵ects found

in Kepler lightcurves.

2.1.1 Orbit

Modeling transit, secondary eclipse, and phase curve e↵ects requires mathe-

matical constraint of exoplanetary orbital parameters. With proper description of

the planet’s orbit, it is possible to assess its other characteristics. First, the mean

anomaly, M(t), is calculated, which describes the location of an exoplanet in its

orbit as

M(t) = M0 +
2⇡t

P

where M(t) is in radians, t is time and P is the period. When t = P , the mean

anomaly is equal to the initial mean anomaly, M0, which describes the planet’s

location on its projected orbital circle at the nominal beginning of each new orbit.

If all planets orbited in circles, this relationship would be su�cient to describe

an object’s location on its orbital path. However, eccentric orbits require us to

describe the true anomaly, f(t), as

f(t) = 2 arctan

✓r
1 + e

1� e
tan

✓
E(t)

2

◆◆
,

where E(t) is the eccentric anomaly. True anomaly describes the deviation of an

exoplanet’s actual orbital ellipse from its projected orbital circle defined by the

mean anomaly. The geometric relationship between mean and true anomaly is
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ω

M

θ

a

b

0.031 AU

HD 189733 b

Figure 2.1: Illustrates the orbit of HD189733 b, with and star size scaled accurately.
M is the mean anomaly, a is the semimajor axis, b is the semiminor axis, ! is the
longitude of periastron, and ✓ is the angle where the phase is zero.

illustrated in Figures 2.1 and 2.2 for the example case of HD 189733 b, in which

eccentricity (e), semimajor axis (a), and period (P ) are 0, 0.031 AU, and 2.219

days respectively. Many hot-Jupiters have circular orbits, as tidal forces induce

circular orbits and hot-Jupiters are often tidally locked to their host stars.

The eccentric anomaly, E(t), is defined by the transcendental equation

E(t) = M(t) + e sinE(t),

which must be solved numerically. The model uses a numerical solution described
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ω f
E

θ

a

b

M

= 0.0124 AU

= 0.031 AU

HD 189733 b with theoretical eccen = 0.4

Figure 2.2: The 2 dimensional projection of a face-on (i = 0�) orbit for HD189733 b
is shown with a heavily exagerrated eccentricity of e = 0.4 to illustrate its impact on
the orbit’s shape. M is the mean anomaly, f is the true anomaly, E is the eccentric
anomaly, ! is the longitude of periastron, e is the eccentricity, a is the semimajor axis,
and b is the semiminor axis. The circle that intersects the ellipse at the ends of its long
axis is the one projected in the equation for mean anomaly. The dashed line connects
the planet’s position on its orbital ellipse to its position on the mean anomaly circle.
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in Murray & Dermott (1999) as

E
i+1 = M + e sinE

i

where i marks the iteration number of the program. This equation iterates until

a specified tolerance precision value of |E
i+1�E

i

| is achieved. The model uses the

10�8 tolerance value suggested by Murray & Dermott (1999). After calculating

the eccentric anomaly, the true anomaly can be solved for. Furthermore, the

distance between planet and star can be calculated as

d(t) = a(1� e cosE(t))

which accounts for the changing distance due to eccentricity. See Murray &

Dermott (1999) for derivations of the aforementioned equations and a thorough

discussion of orbital dynamics. The final calculation is the phase angle

✓(t) = arccos(sin(! + f(t)) sin i)

where ! is the argument of periastron, the angle that separates the planet’s

orbital location from its pericenter. The phase angle describes the angle between

the vector of observer’s line-of-sight and the vector from star to planet (Mislis

et al. 2012; Placek et al. 2014). Now, we have a complete description of the

orbital ellipse or circle of a modeled exoplanet, which allows us to accurately

model the transit, secondary eclipse, and phase curves from a planet-star system

based on specified input parameters.
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2.1.2 Transit

With proper orbital modeling, we can now model the depth and duration of the

transit based on the planet-star radius ratio, period, semimajor axis, inclination,

argument of periastron, and eccentricity. First contact is the time at which the

edge of the planet touches the first edge of the star from the observer’s point of

view. Second contact denotes the time at which the trailing edge of the planet

crosses the first edge of the star. Third contact is the time at which the leading

edge of the planet contacts the second edge of the star. Fourth contact is when

the trailing edge of the planet contacts the second edge of the star. Our model

uses PyTransit (Parviainen 2015) to model the transit and the Crossfield (2012)

transit light curve code to model the secondary eclipse, both of which use the

Mandel & Agol (2002) formalism. Where R
p

is the planetary radius, R⇤ is the

stellar radius, and d is the distance between the two objects, the depth of the

transit, �
transit

, is described by Mandel & Agol (2002) as

�
transit

=

8
>>>>>>>>>><

>>>>>>>>>>:

0, where 1 + k > z

1
⇡

[k20 + 1 �
q

4z2�(1+z

2�k

2)2

4 where |1� k| < z  1 + k

k2, where z  1� k

1 where z  �1

(2.1)

1 = arccos
h1� k2 + z2

2z
]

0 = arccos
hk2 + z2 � 1

2kz

i
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k =
R

p

R⇤
, z =

d

R⇤
.

Clearly the depth of the transit, �
transit

, is highly dependent on the planet-star

radius ratio and the distance between the two objects. The nonuniform brightness

of the stellar photosphere is also a factor and is described by limb darkening. The

backdrop of the star at second and third contact is slightly dimmer than it is in

the middle of transit, as the observer’s line of sight vector does not penetrate as

deeply into the star’s photosphere, as it is diagonal at second and third contact

rather than orthogonal to the star’s surface, as it is during the transit center.

Because this line of sight vector does not go as deep into the star at second and

third contact as it does during midtransit, the material observed is cooler at these

locations, which means the observer does not receive as much flux. Limb darkening

also changes as a function of wavelength (Knutson et al. 2007). Limb darkening

coe�cients are plugged into a series of quadratic equations in the Mandel & Agol

(2002) formalism, producing the di↵erent transit models shown in Figure 2.3.

Now that the transit depth as a function of input parameters is known, the

duration of the transit must be calculated. First we must calculate the impact

parameter (Winn 2010)

b
transit

=
a cos(i)

R⇤

⇣ 1� e2

1 + e sin(!)

⌘
,

which describes the location of the transit across the star’s disk and is illustrated

in Figure 2.4.

With knowledge of the impact parameter, we can calculate the full duration

of the transit, as well as fractional durations of ingress, egress, and full transit

(second-third Contact) through the equation (Winn 2010)
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Figure 2.3: Limb darkening e↵ects significantly change the shape of the transit curve
bottom. This transit was modeled with various quadratic limb darkening coe�cients
from 0.25-0.45, with 0.26, 0.25 for the model with the flattest bottom and 0.45, 0.44 for
the model with highest curvature at the transit bottom. Determining the correct limb
darkening coe�cient for each target is important to achieving a viable fit.
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b

Figure 2.4: Illustrates the impact parameter for a 1.1 Jupiter mass planet (grey)
transiting a 0.8 solar radii K star (orange). The impact parameter measures the o↵set
of the line followed by the planet during transit from the line through the center of
the star that is the same length as the stellar diameter. This parameter is crucial for
determining transit timing, as well as the shape of ingress and egress in the lightcurve.

t
x

� t
y

=
P

2⇡
p
1� e2

Z
t

x

t

y

hr(f)
a

i2
df

where r(f) is the planet-star distance as a function of true anomaly and df is

the true anomaly infinitesimal. Where T
tot

is the duration of transit from first to

fourth contact and T
full

is the duration of transit from second to third contact,

this integral can be simplified for circular orbits as (Winn 2010)

T
tot

=
P

⇡
arcsin

✓
R⇤

a

p
(1 + k)2 � b2

sin i

◆

T
full

=
P

⇡
arcsin

✓
R⇤

a

p
(1� k)2 � b2

sin i

◆
.

Now that the duration and depth of the transit are known, we can model tran-

sits to data to determine absolute exoplanet dimensions and orbital parameters.
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Some of these dimensional ratios, such as (Winn 2010)

R⇤

a
=

⇡

2�1/4

q
T 2
total

� T 2
full

P

✓
1 + e sin(!)p

1� e2

◆
,

are important for determining the magnitude of tidal interactions between star

and planet. The ratio of the planet radius to semimajor axis (Rp

a

) determines the

total fraction of stellar luminosity received by the planets, thus this ratio is also of

interest (Winn 2010). Finally, by assuming a stellar mean density, the planetary

density can be calculated as (Winn 2010)

⇢⇤ + k3⇢
p

=
3⇡

GP 2

✓
a

R⇤

◆3

,

which can grant insight into an exoplanet’s possible composition, as rock and

gas have very di↵erent densities, which is why Earth is much more dense than

Jupiter or Saturn. The planetary density measured in gas giants is an average

between rock and gas densities, but for terrestrial planets the density will likely

be distinctly rocky. Determining these di↵erent planetary characteristics through

analysis of transits has allowed astronomers to make statistical assessments regard-

ing abundances in radius, mass, eccentricity, and other constrained parameters.

Because of Kepler, modeling transits has granted insight into the attributes of

thousands of exoplanets.

2.1.3 Secondary Eclipse

Planet dimensions and characteristics can be better constrained through an

analysis of both secondary eclipse and transit rather than analysis of solely the

latter. The secondary eclipse depth is a direct function of the exoplanet’s thermal
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and reflected flux, which can be used to measure the planet’s albedo and dayside

temperature. The contribution of these individual fluxes to the secondary eclipse

depth is described by Esteves et al. (2013) as

�
eclipse

=

✓
R

p

R⇤

◆2 R B
�

(T
B,day

)T
K

d�R
T
K

f
�,⇤d�

+ A
g

✓
R

p

a

◆2

.

This provides a powerful constraint on the total combined flux of reflected light

and thermal emission. The timing of the secondary eclipse center relative to the

transit center, which we will set as phase = 0, is dependent on the system’s

eccentricity and argument of periastron. The time of mid secondary eclipse can

be calculated as

t =
P

2


1 + 4e cos(!)

�
,

which provides an important constraint on eccentricity and argument of perias-

tron. The secondary eclipse duration also constrains these orbital parameters.

The equation is the same as that of transit duration, but the impact parameter is

b
occ

=
a cos(i)

R⇤

⇣ 1� e2

1� e sin(!)

⌘
,

providing yet another measurement of orbital parameters. Figures 2.4, 2.5, and

2.6 illustrate eclipse timing change with respect to eccentricity and argument of

periastron, as well as the change in secondary eclipse and transit duration.

2.1.4 Phase Curves

Phase curve flux contributions provide the final details to the model. The

total phase e↵ect flux is a combination of flux from reflection, thermal emission,
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Figure 2.5: Illustrates the change in secondary eclipse timing, duration, and transit
duration with respect to eccentricity and argument of periastron (!). The verticle line
goes through the secondary eclipse center. Eccentricity determines the ellipticity of
the orbital ellipse, while the argument of periastron determines the orientation of that
ellipse relative to the observer. With low eccentricities, the timing of the secondary
eclipse shifts by a small amount, though still very measurable. This figure shows the
shifting of secondary occultation center with respect to argument of periastron given an
eccentricity of 0.05. Note that the duration of the transit also changes with di↵erent
orientations of eccentric systems, though the e↵ect is not notable here.
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Figure 2.6: Illustration of the shifting of secondary eclipse occultation center with
respect to argument of periastron given an eccentricity of 0.15. The verticle line goes
through the secondary eclipse center. Clearly the orientation of the ellipse matters more
for secondary eclipse timing given a larger eccentricity, thus ! has a greater impact. Note
that the duration of the transit also noticeably changes with di↵erent orientations of
eccentric systems.
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Figure 2.7: This figure illustrates the shifting of secondary eclipse occultation center
with respect to argument of periastron given an eccentricity of 0.25. The verticle line
goes through the secondary eclipse center. Note that the duration of the transit and
eclipse also noticeably change with di↵erent orientations of this eccentric system.
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Figure 2.8: Illustrates the changing phases of an exoplanet that produce the reflected
flux phase curve. The white parts of the planet are reflecting, while the black regions
are not. During transit, the planet is in new phase.

ellipsoidal variations, and Doppler beaming. Characterizing an exoplanet’s phase

curves provides information regarding atmospheric temperature, albedo, orbital

properties, and nondegenerate mass and inclination measurements.

Reflected Flux

The reflected flux from an exoplanet comes from starlight striking the planet’s

atmosphere and bouncing towards the line of sight of the observer. The change

in reflected flux with phase is the same as the shifting phases of Earth’s moon.

During transit, the planet is in new phase, as the entire portion of the planet

reflecting starlight is facing away from us. The planet enters full phase during

secondary occultation, but will approach the full phase before first contact of the

secondary eclipse. Figure 2.8 illustrates how reflection from an exoplanet changes

with time.

The total amount of reflected flux at a specific time during the orbital phase

is calculated as (Mislis et al. 2012; Placek et al. 2014)
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Figure 2.9: Reflected flux phase curve over a single phase. On the left plot, the
colors correspond to models run with di↵erent planetary radii. On the right, the colors
correspond to models run with di↵erent inclinations. The peak of the reflected flux is
blocked out during secondary eclipse, thus that part of the curve is not observed.

F
reflected

(t)

F⇤
=

A
g

2

R2
p

[d(t)]2
[1 + cos✓(t)],

where A
g

is the geometric albedo defined as the ratio of reflected flux from the

exoplanet’s atmosphere at full phase and the reflected flux from a Lambertian

disk of equal cross-sectional area (Burrows and Orton 2011). Lambertian disks

are perfectly flat and di↵using surfaces, therefore the closer A
g

is to 1, the more

perfectly reflective the planet’s atmosphere. The reflected flux equation is also

partly used in calculation of the secondary eclipse depth.

Examples of reflected flux phase curves are shown in Figures 2.9 and 2.10.

These figures also show how the shape of the reflective flux phase e↵ect changes

through the shifting of a single orbital parameter (R
p

, e, i, A
g

).
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Figure 2.10: Shows the reflected flux phase curve over a single phase. On the left plot,
the colors correspond to models run with di↵erent geometric albedo. On the right, the
colors correspond to models run with di↵erent eccentricity.

Thermal Emission Flux

Most objects for which phase curve analysis is viable are tidally locked to their

host stars, as making a planet hotter and moving it closer to its star amplifies the

magnitude of the system’s phase e↵ects. As such, many have permanent day and

nightsides, which have di↵erent temperatures. Winds can provide a mechanism

for smoothing this temperature gradient, but the planet will still have a zone of

maximum temperature, which will emit more thermal flux than cooler sections.

The variation in phase of the thermal emission curve comes from this hot zone

coming in and out of view throughout the course of the orbit. The emission is

thought to be at maximum during the full phase, at which time light from the

planet is blocked during the secondary eclipse. The maximum temperature seen

by the observer is thus thought to come immediately before ingress and after
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Figure 2.11: Thermal flux phase curve over a single phase. On the left, the di↵erent
colors correspond to di↵erent dayside temperatures for the same planet. On the right,
the di↵erent colors correspond to di↵erent radii for the same planet.

egress of the secondary eclipse.

Thermal flux contribution is calculated as (Placek et al. 2014)

F
thermal,day

(t)

F⇤
=

1

2


1 + cos ✓(t)

�✓
R

p

R⇤

◆2 R B(T
day

)G(�)d�R
B(T

eff

)G(�)d�
,

where B(T
day

) is the Planck function for the planet, B(T
eff

) is the Planck function

for the star, and G(�) is the Kepler response function at wavelength � (Van Cleve

2009). This equation also contributes to the final calculation of eclipse depth,

which is the sum of both this thermal flux and the aforementioned reflected flux.

Figures 2.11 and 2.12 show the flux contribution from the thermal phase e↵ect,

as well as its change with respect to a single parameter (e, i, R
p

, and dayside

temperature).

The individual contributions between thermal and reflected flux from the ex-
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Figure 2.12: Thermal flux phase curve over a single phase. On the left, the di↵erent
colors correspond to di↵erent eccentricities for the same planet. On the right, the
di↵erent colors correspond to di↵erent inclinations for the same planet.

oplanet are di�cult to measure, making the geometric albedo and dayside tem-

perature degenerate parameters. This is a considerable problem for single-band

photometric phase curve analysis that remains to be resolved.

Looking at Figures 2.9-2.12, it is easy to see why planetary temperature and

geometric albedo are degenerate parameters, as the thermal and reflected flux

phase curves are nearly identical in structure. This can often lead one value

being depressed and the other inflated upon output from the model. Developing

a means to break this degeneracy would greatly improve the robustness of single

band photometric phase e↵ect analysis. Exoplanetary winds may be a mechanism

for shifting the hot zone in some specific cases, thus breaking this degeneracy.



2. Modeling 36

Ellipsoidal Variations Flux

Ellipsoidal variations are a gravitational e↵ect caused by the exoplanet’s grav-

itational pull warping the star from its generally spherical shape to that of an

ellipsoid. The bulge induced by this gravitational warping follows the orbit of the

planet, meaning the solid angle of the star seen by the observer changes as this

bulge rotates during the phase. The flux contribution from ellipsoidal variations

and its change in phase is calculated as (Placek et al. 2014)

F
ellipsoidal

(t)

F⇤
= �

M
p

M⇤


R⇤

d(t)

�3✓
cos2[! + f(t)] cos2(i)

◆

where � is the gravity darkening exponent calculated as (Mislis et al. 2012)

� =
log10(GM⇤/(R⇤)2)

log10(Teff

)

which changes with stellar mass and radius, planet mass, and parameters to char-

acterize the 3D orbit of the exoplanet. This is one of the phase e↵ects that helps

constrain the mass parameter. Figure 2.13 shows the shape of this phase curve,

as well as its change with respect to planet mass, eccentricity, and inclination.

These sinusoidal variations have a significantly shorter period than those of

the Doppler beaming e↵ect discussed below, therefore these two phase e↵ects are

not degenerate. Minor asymmetries in phase curves on either side of a secondary

eclipse often come from asymmetry in the ellipsoidal variation flux sinusoids that

increases with greater eccentricity. This can further help to constrain this critical

parameter.
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Figure 2.13: Ellipsoidal variations flux phase curve over a single phase. On top, the
di↵erent colors correspond to di↵erent masses for the same planet. In the middle, the
di↵erent colors correspond to di↵erent inclinations for the same planet. On the bottom,
the di↵erent colors correspond to di↵erent eccentricities for the same planet.
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Doppler Beaming Flux

Doppler beaming is a relativistic e↵ect caused by redshifting and blueshifting

of stellar flux due to movement of particles in the star towards the planet. The

flux contribution from doppler beaming is calculated as (Loeb & Gaudi 2003)

F
beam

(t)

F⇤
=

4v
r

c

where c is the speed of light in a vacuum and v
r

is the radial velocity of star,

defined as

v
r

= V
z

+K(cos[! + f(t)] + e cos(!))

where V
z

is the speed at which the star is traveling relative to the sun and K is

the radial velocity semiamplitude, defined as (Lovis & Fischer 2010)

K =
28.4329p
1� e2

M
p
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M
Jup

✓
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a

1AU

◆�1/2

where a is the semimajor axis, or (Lovis & Fischer 2010)
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28.4329p
1� e2
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where P is the period.

The shape of the Doppler beaming phase curve is illustrated in Figure 2.14,

as well as its change in shape with respect to planet mass, eccentricity, and incli-

nation.

The sinusoid of this phase e↵ect is distinct from that of ellipsoidal variations

due to its longer period. Doppler beaming is an important phase e↵ect for con-
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Figure 2.14: Doppler boosting flux phase curve over a single phase. On top, the
di↵erent colors correspond to di↵erent masses for the same planet. In the middle, the
di↵erent colors correspond to di↵erent eccentricities for the same planet. On the bottom,
the di↵erent colors correspond to di↵erent inclinations for the same planet.
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Figure 2.15: Illustrates the combined phase curve flux from all four e↵ects, with
di↵erent colors corresponding to di↵erent radius values. The planetary radius a↵ects
the magnitude of the phase curves as well as the curvature of the phase curve peak.

straining the exoplanet’s mass, inclination, and eccentricity. Constraint of Doppler

beaming flux contributions complements constraint of ellipsoidal variation contri-

butions, both of which constrain the same planetary parameters.

Combined

Figures 2.15-2.18 show combinations of di↵erent phase curves, as well as their

change with respect to specific parameters. Most parameters have a distinct e↵ect

on the overall shape of the phase curves. In some cases, high temperatures can

wash out all the gravitational phase e↵ects by becoming overwhelmingly high in

amplitude. In Figure 2.17, it is apparent that at high temperatures the amplitude

of the thermal phase e↵ect becomes strong enough to overpower the remainder of

the e↵ects. The reflective phase curve exhibits this same behavior with respect

to the albedo parameter, meaning that when combined, the phase e↵ects of an

extremely reflective exoplanet atmosphere may appear to be dominantly, even
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Figure 2.16: Illustrates the combined phase curve flux from all four e↵ects, with di↵er-
ent colors corresponding to di↵erent eccentricity values. It is apparent that eccentricity
produces significant asymmetries in the flux from phase e↵ects over a single phase.

solely, reflective. The eccentricity term serves to pull the peaks of each phase

curve towards either the left or right of the phase, depending on the argument of

periastron, as illustrated in Figure 2.15. The maxima of the thermal and reflective

phase curves shift in the same direction with respect to phase, while the maxima

and minima of the gravitational phase e↵ects both shift in the same direction.

The gravitational phase curves become compressed in the direction in which they

are pulled by the eccentricity term and expanded on the opposite end of the phase

from which they are pulled, as is apparent in Figure 2.15.

Inclination a↵ects all four phase e↵ects in a similar way –it simply reduces each

of their amplitudes as it moves towards 0� from 90�, as is apparent in Figure 2.9,

2.12, 2.13, 2.14, and 2.16. The inclination is also heavily constrained by fitting

the transit, so this specific parameter is generally well characterized by our model.

The radius, too, is well characterized by the transit, though increasing it a↵ects

the phase curve shape in a similar way to increasing temperature or albedo. As
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Figure 2.17: Illustrates the combined phase curve flux from all four e↵ects, with
di↵erent colors corresponding to di↵erent inclination values. It is apparent that changing
the inclination significantly impacts the magnitude of flux from the phase e↵ects.

is apparent in Figure 2.18, increasing the radius washes out the bimodal shape

of the combined phase curve that is induced by the contribution of gravitational

phase e↵ects. This is similar to the overwhelming of gravitational e↵ects by high

temperatures discussed in the previous paragraph. This triple parameter degen-

eracy between albedo, temperature, and planetary radius would be a significant

challenge for any fitting algorithm. However, with addition of transit modeling to

our analysis, this is reduced to a double parameter degeneracy, which is far more

manageable.

Many exoplanet systems exist that do not show each individual phase e↵ect.

For systems with small, hot planets orbiting close to their host star, such as

Kepler-7 b, the only present phase e↵ects appear to be reflective and thermal

in nature, as the gravitational components are not of high enough amplitude to

contribute noticeably to the overall shape of the phase curve. This may potentially

make planetary mass harder to measure. For systems with similar temperatures
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Figure 2.18: Illustrates the combined phase curve flux from all four e↵ects, with
di↵erent colors corresponding to di↵erent dayside temperature values. The dayside
temperature clearly impacts the magnitude of flux from the combined phase curves,
though this only changes the thermal flux phase curve.

but considerably higher mass, such as Kepler-5 b, the dominant phase e↵ects are

clearly gravitational in shape. Phase curves for both of these specific systems will

be modeled in Chapter 4 of this thesis. For another informative description of

modeling phase e↵ects, see Serindag (2015).



Chapter 3

Fitting

Fitting algorithms are designed to assess the fit of a model to a dataset and

adjust parameters to move towards a better fit with fewer residuals, a term used to

describe the numerical di↵erence between the model and data. We are attempting

to fit the transit, secondary eclipse, and all four phase e↵ects simultaneously by

integrating them into a single model that can be assessed for agreement to data.

The amplitude of the transit is far greater than that of the secondary eclipse or

phase curves, so this part of model immediately provides a strong constraint on

radius and inclination. After this, other planetary parameters shift throughout

the course of the fitting process until they eventually settle at their best fit values.

These best fit values thus provide measurements for temperature, albedo, mass,

eccentricity, and argument of periastron.

A paramount fundamental problem facing fitting routines is that of parameter

degeneracy, which describes parameters that produce nearly identical e↵ects on

the overall shape of the model when adjusted. For the phase curve model alone,

planetary radius, temperature, and albedo are all degenerate parameters, since ad-

justing one has a similar e↵ect on the phase curve amplitude as adjusting either

of the other two, as shown in Figure 3.1. This often leads to one or more of these

values being depressed while their fellow degenerate parameters are increased to

unphysical levels. To combat this, we run multiple models that encompass all pos-
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sible combinations of the four phase e↵ects, as well as the possibility of none of the

e↵ects being present. This serves to lessen the dimensionality of parameter space

while simultaneously eliminating degenerate parameters pairings in some models.

Furthermore, addition of more constraints to the model can eliminate parameter

degeneracies. In our case, the addition of transit analysis to our assessment gives

us another probe for the radius value, thereby eliminating the aforementioned

degeneracy, as is shown in Figure 3.1. Without this additional transit constraint,

planetary albedo, temperature, and radius would be triple degenerate parameters.

It is clear why temperature and albedo are degenerate parameters, as they can

be used interchangeably to produce the same e↵ect. The di↵erence between a

bright, cool planet and a dark, warm planet, is di�cult to determine. Perhaps a

convenient way of constraining this degeneracy would be to calculate a minimum

expected temperature based on flux received from the star at the planet’s or-

bital distance. The temperature could potentially be warmer than this, assuming

the atmosphere traps heat, but would not go beyond this lower bound. We will

implement this constraint in future models.

Another major issue encountered by fitting algorithms lies in guaranteeing the

program will actual find the best fit values of a global minimum in residuals rather

than values that correspond to a local minimum in residuals. If a fitting program

goes to a local minimum in residual values, the gradient of residual space can

trap the algorithm in this “well”. To escape, the gradient of residual space must

somehow be lessened through a process called parallel tempering (Earl & Deem

2005; Foreman-Mackey et al. 2013). If the fitting routine cannot escape, it will

output incorrect parameter values that correspond to a local minimum in residuals

rather than a global minimum. We will use two di↵erent implementations of the

Markov Chain Monte Carlo fitting algorithm in an e↵ort to resolve these issues.
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Figure 3.1: For HAT-P-7 b. Illustrates how the triple degeneracy between albedo,
planetary temperature, and planetary radius is broken by including the transit in mod-
eling and fitting process. Though the phase e↵ects and secondary eclipse appear to
be essentially indistinguishable between the three plots, each of which uses a di↵er-
ent combination of these three parameters, the di↵erence in the transit portion of the
model induced by adjusting the radius is obvious. This allows us to reduce the triple
degeneracy to a double degeneracy between albedo and temperature.
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3.1 Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) (Ivezić et al. 2014) is our favored

fitting method for this model. It consists of applying the Monte Carlo process of

moving walker chains based on posterior probability density distributions. Walkers

are individual probes of parameter space that move upon every iteration of the

fitting program. Most fitting algorithms that utilize posterior probability density

distributions depend heavily on its thorough and detailed constraint. The MCMC

is designed to sample and provide approximations to posterior probability density

even in systems dependent on a large number of parameters (Foreman-Mackey

et al. 2013).

3.1.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) implementation of the MCMC centers the

walkers in a compact distribution around the currently existing chain of walk-

ers (Ivezić et al. 2014; Foreman-Mackey et al. 2013). It has N [N + 1]/2 tuning

parameters, where N is the number of dimensions comprising parameter space.

The algorithm is highly sensitive to the values of these numerous parameters,

many of which cannot be properly estimated before implementing the fitting rou-

tine. For this reason, we will implement a more e�cient and capable version of

the MCMC that utilizes a�ne invariant sampling.

3.1.2 A�ne invariant sampling

The a�ne invariant sampling MCMC (Goodman & Weare 2010; Foreman-

Mackey et al. 2013) links together the position of two random walkers across
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parameter space. Each step taken by one walker is selected from a proposal

distribution connecting its position in parameter space to its partner’s. This

is particularly useful for probing anisotropic probability distributions with high

numbers of dimensions. The classic problem faced by many probability density

sampling routines is commonly visualized as a highly anisotropic probability den-

sity, defined as (Foreman-Mackey et al. 2013)

⇡(x) / exp

✓
� (x1 � x2)

2✏
� (x1 + x2)2

2

◆
,

where ✏ is a proportionality constant (Goodman & Weare 2010). This definition

of probability density is sensitive to parameter constraints of N2 parameters,

which makes this problem much worse with higher dimensions (Foreman-Mackey

et al. 2013). The problem can be simplified by the a�ne transformation of y1 =

x1�x2p
✏

, y2 = x1 + x2 (Goodman & Weare 2010; Foreman-Mackey et al. 2013;

Ivezić et al. 2014), which is conducive to a�ne invariant sampling, capable of

performing well under all linear transformations, helping to reduce sensitivity to

degeneracy between parameters. This sampling method also allows the walkers to

take nonorthogonal steps, which quickens their convergence to the best fit value.

Flaherty et al. (2015) favor an a�ne-invariant routine MCMC over the Metropolis-

Hastings algorithm, as it reduces significant degeneracies between parameters that

would otherwise prove problematic for their protoplanetary disk turbulence model.

Hou et al. (2012) use an a�ne invariant sampler to fit radial velocity data for

exoplanet detection and characterization. This sampling approach is hundreds

of times faster than a comparable Metropolis-Hastings MCMC, which makes this

a�ne invariant fitting method far more applicable to large datasets. Overall,

the a�ne invariant sampler is superior to the Metropolis-Hastings algorithm in
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terms of speed and accuracy in probing posterior probability distribution functions

subject to strong parameter degeneracies.

A�ne invariant sampling is weak when probability distributions take on a

multi-modal form, which is indicative of a local maximum within the distribution.

Large groupings of these walkers can congregate at these local maxima due to the

nature of their collective movement and convergence, as walkers are linked, unlike

in other sampling methods. If such a large grouping of walkers develops, the

other walkers will likely trek towards this incorrect solution, causing the model to

output false parameters. Alternatively, groups of walkers can build up at multiple

local maxima, which confines their movement to a line connecting the two peaks

Ivezić et al. (2014). The probability distributions used by our fitting algorithm

are often characteristically multi-modal. For this reason, solely a�ne invariant

sampling will not be su�cient for our fitting algorithm. Now, we must include

a parallel-tempering algorithm to give the walkers more chance of overcoming

gradients of parameter space that crowd them to local maxima.

3.1.3 Parallel tempering algorithm

The parallel tempering MCMC (Earl & Deem 2005; Foreman-Mackey et al.

2013) deals with the local maxima issue in a�ne invariance sampling by run-

ning multiple MCMCs at di↵erent“temperatures”. Turning up the temperature

flattens parameter space, which enables walkers to overcome probability gradi-

ents that would otherwise be insurmountable. Furthermore, it exchanges walk-

ers between these di↵erent temperatures, which propagates this increased walker

freedom to the lower temperature MCMCs. Parallel tempering takes care of the

primary issue with a�ne invariant sampling, therefore our fitting algorithm is now
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capable of dealing with the anisotropy, high dimensionality, and multi-modality

of the probability distributions that it will analyze. We use the parallel-tempering

MCMC from the emcee Python library (Foreman-Mackey et al. 2013). For ad-

ditional informative discussion of the advantages of this fitting method for this

specific probability density distribution type, see Serindag (2015).



Chapter 4

Results

In order to test the e↵ectiveness of our model in generating accurate lightcurves,

we run it on four di↵erent Kepler exoplanets –Kepler-5 b, Kepler-6 b, Kepler-7 b,

and HAT-P-7 b. In order to do this, we first had to run the Kepler data through

a reduction process. Then, our MCMC generates models and fits them to the

data, adjusting parameter values until they, ideally, reach the actual values of the

exoplanetary system.

Testing our modeling and fitting process on four real Kepler exoplanets il-

luminates their strengths and weaknesses. The most prominent weakness made

apparent by these tests is in the secondary eclipse modeling. We obtained our

secondary eclipse model from the code made public by Crossfield (2012). This

particular secondary eclipse model does not include the ingress and egress of the

secondary eclipse, just its bottom. This leads to multiple data points measuring

secondary eclipse ingress and egress being poorly fit, which throws o↵ the fitting

routine. If this modeling error is resolved, our fitting routine will likely be able to

accurately characterize the entire lightcurve to a �2 of < 2. Alternatively, if our

fitting process is unable to output realistic temperature and albedo parameters

upon resolution of the secondary eclipse ingress and egress issue, there is likely a

deeper issue in our calculation of the thermal and reflective phase curves as well

as the secondary eclipse depth.
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Because the Crossfield (2012) model does not address secondary eclipse ingress

and egress, we will need to construct our own in the future. The �2 values for

our fitting all exceed 17, which means they are not statistically significant fits,

though they may appear to be by eye. This could also mean that our model

is underestimating errors or is not a complete description of the system, which

is likely due to this slight shortcoming in the secondary eclipse model. We will

display and discuss the output parameters from our real exoplanet tests from the

best fit, lowest �2 models, though the �2 is still not low enough to make these

results statistically significant. We also present “triangle” plots from the runs,

which illustrate the movement of our MCMC walkers through di↵erent dimensions

of parameter space. Finally, we show the lightcurve fits and their residuals.

4.1 Kepler Exoplanets

4.1.1 Data Reduction

The portion of our data reduction routine that reduces secondary eclipse and

phase curve sections of Kepler data is the same one constructed and employed

by Serindag (2015), but without the occultation clipped out before processing.

A new code was written to reduce the transit sections of the data, which were

seeing a deviation in transit depth from literature values out after undergoing the

same reduction process as the secondary eclipse and phase curves. A new transit

data reduction routine was constructed. It uses literature values for planetary

parameters to clip the transit portion of the lightcurve, grabbing a comfortable

margin of data points before ingress and after egress, though these data points

were not removed from secondary eclipse-phase e↵ect section of the lightcurve.

A spline function was then fit between the collection of data points before and
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after each transit. The same spline was calculated for the in-transit portion of the

lightcurve, then the in-transit data points were divided by the spline. After this,

the data were phase folded.

Provided all input data are short-cadence Kepler datasets, this produces tran-

sits, secondary eclipses, and phase curves datasets of comparable quality to those

seen in literature (Kipping & Bakos 2011; Gostev 2011; Esteves et al. 2013; Es-

teves et al. 2015; Placek & Knuth 2015). However, the degree to which phase

curve e↵ect magnitude is weakened with exclusion of long-cadence Kepler data

must be better characterized in the future. Long-cadence data is better for detect-

ing weak phase-long signals, like phase curves, while short cadence data is superior

for detection of strong and short-term signals, like transits or, less so, secondary

eclipses. The optimal solution to this potential issue is to modify the data reduc-

tion program so that it uses only short-cadence data for all of the transit data

reduction, but still processes the long cadence data in the phase-curve/secondary

eclipse portion of the reduction.

4.1.2 Kepler-5 b

Table 4.1: Kepler-5 b: Fixed Parameters. R⇤ is the stellar radius, M⇤ is the stellar
mass, T⇤ is the stellar temperature, a and b are the quadratic limb darkening coe�cients,
g is the gravity darkening coe�cient, and P is the period.

Parameter Value Reference

R⇤ [R�] 1.793 Koch et al. (2010)
M⇤ [M�] 1.374 Koch et al. (2010)
T⇤ [K] 6297 Koch et al. (2010)
a,b 0.368,0.142 Müller et al. (2013)
g 0.2915 Koch et al. (2010)

P [days] 3.54846 Koch et al. (2010)
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Figure 4.1: Illustrates the data (black) and ReThElDo model lightcurve (red) for
Kepler-5 b. (above) Two phases of the planet’s orbit. This illustrates how the transit
and secondary eclipse events occur continuously. The small horizontal bars are error
bars. (middle left) The secondary eclipse section of the phase. This is the section of
the phase around � = 0.5. (bottom left) The entire phase at a scale in which the phase
e↵ects are visible. This scale is, of course, extremely small, as phase e↵ects are the
lowest magnitude of all flux variations. (bottom right) Transit fit. This is clearly the
largest feature in every light curve, which allows for very precise constraint of planetary
radius and inclination.
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The 20 walker 500 step run for Kepler-5 b demonstrates many interesting

successes and issues in our model. As shown in Figure 4.1, the overall fit to the

data looks excellent. However, some of our ouput parameter values do not agree

with those in the literature. As shown in Table 4.2, for the ReThElDo model,

the fitting successfully constrains the eccentricity, mass, and planetary radius to

values that agree with those in Esteves et al. (2013). The best fit value is the

parameter associated with the model of lowest �2 and the median value is the

one walkers spent the most time at during the fitting process. The error bars are

a measure of the distribution of walker positions around the median value. The

derived mass for our planet is closer to the minimum mass measured by radial

velocity techniques than those in Esteves et al. (2015). The inclination does not

agree with phase curve analysis literature values (Esteves et al. 2013; Esteves

et al. 2015), but does agree with transit analysis literature values (Kipping &

Bakos 2011). The geometric albedo and temperature are not in agreement with

any literature values. Furthermore, the degeneracy between these parameters is

demonstrated by our ThElDo model, which does not include reflection, producing

a comparable �2 value to the ReThElDo model that contains all four phase e↵ects,

as shown in Table 4.2.

Table 4.2: Kepler-5 b: ReThElDo Model �2 = 33.12. 20 walkers 500 steps

Parameter Best Fit Median Accepted Value Reference

e 0.002 0.001+0.001
�0.001 0a Esteves et al. (2015)

i [deg] 86.79 86.753+0.004
�0.003 86.3± 0.5 Kipping & Bakos (2011)

! [rad] 2.31 2.99+0.05
�0.07 ... Esteves et al. (2015)

M
p

[MJ] 1.50 1.08+0.19
�0.13 0.92+0.93

�1.02 Esteves et al. (2015)
R

p

[RJ] 1.408 1.4065+0.00015
�0.00008 1.431+0.041

�0.052 Esteves et al. (2015)
A

g

0.026 0.016+0.004
�0.005 0.121+0.034

�0.036 Esteves et al. (2015)
T
day

[K] 1497 1590+70
�96 2390+80

�100 Esteves et al. (2015)
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Figure 4.2: This “triangle” plot shows the movement of the walkers through parameter
space during the course of the fitting procedure for the ReThElDo model applied to
Kepler-5 b. For some parameters, the walkers settle around the best fit value in a
Gaussian manner, while for others they run up against boundaries. The parameters
displayed here are, from top to bottom, (1) e, (2) i, (3) !, (4)M

p

, (5)R
p

, (6)A
g

, (7) T
day

,
(8) Flux o↵set. The middle dotted line shows the median value and the surrounding
dotted lines represent 1� errors. Ideally, the correct value will correspond to this median
value. The overall shape of the walker movement shows the probability distribution of
each parameter. Some parameters have nearly Gaussian probability distributions, while
the walkers of others encounter the boundaries for their parameters, gathering at these
extreme values. The Gaussian distribution is typically favorable to the gathering of
walkers at value boundaries.
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As shown in Table 4.2, other than planetary mass and temperature, the

ThElDo model produces essentially the same values for all parameters as the

ReThElDo model. The mass value still falls within the ranges found in Esteves

et al. (2013) and Esteves et al. (2015). However, the temperature is still less than

the value calculated in these works, which is problematic, as it should in this case

be higher to compensate for the lack of albedo. Albedo and temperature con-

tribute to flux received from all planets, but must be of su�cient magnitude to

be detected by the Kepler photometer if they are to be measured. A model that

uses contributions from both parameters to fit data is more physically favorable

than one that simply ignores one of the two relevant e↵ects. Our model is clearly

having trouble accurately fitting the thermal and reflective contributions to the

phase curves, Esteves et al. (2013); Esteves et al. (2015) achieve a statistically sig-

nificant fit with higher values for both temperature and albedo. This is likely due

to the aforementioned secondary eclipse issues, as temperature and albedo flux

constitute the secondary eclipse depth. Our model seems to fit the gravitational

phase curves well because our mass values for both the ReThElDo and ThElDo

models are within the relatively wide range of literature values (Esteves et al.

2013; Esteves et al. 2015) The phase curves shown in Figure 4.1 clearly resemble

the multi-peaked gravitational phase curves more so than the centered single peak

thermal and reflective curves.

Figures 4.2 and 4.3, which show walker movements for both the ReThElDo

and ThElDo models, respectively, illustrate a suboptimal fitting process, which is

probably the result of an issue in the secondary eclipse modeling, not the MCMC.

Because the model is unable to fit the points of secondary eclipse ingress and

egress, it will likely generate incorrect values for parameters that the secondary

eclipse is heavily dependent upon, such as temperature and albedo, which define
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Figure 4.3: This “triangle” plot shows the movement of the walkers through param-
eter space during the course of the fitting procedure for the ThElDo model applied to
Kepler-5 b. More walkers settle at parameter extremes during the run compared to the
ReThElDo run shown in Figure 4.2. The parameters displayed here are, from top to
bottom, (1) e, (2) i, (3) !, (4) M

p

, (5) R
p

, (6) T
day

, (7) Flux o↵set.
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Table 4.3: Kepler-5 b: ThElDo Model �2 = 33.13. 20 walkers 500 steps

Parameter Best Fit Median Accepted Value Reference

e 0.00 0.007+0.002
�0.004 0a Esteves et al. (2015)

i [deg] 86.75 86.753+0.003
�0.002 86.3± 0.5 Kipping & Bakos (2011)

! [rad] 3.87 2.44+0.05
�0.09 ... Esteves et al. (2015)

M
p

[MJ] 1.04 1.04+0.12
�0.14 0.92+0.93

�1.02 Esteves et al. (2015)
R

p

[RJ] 1.407 1.4065+0.0001
�0.0001 1.431+0.041

�0.052 Esteves et al. (2015)
T
day

[K] 1901 128+301
�82 2390+80

�100 Esteves et al. (2015)

the magnitude of its depth. Alternatively, since Kepler-5 b has a very weak

secondary eclipse signal, the model may simply struggle to fit phase curves of such

low magnitudes. Finally, the underlying issue may be neither of these problems,

in which case there must be an error in our thermal and reflective phase curve

modeling and secondary eclipse depth calculation. Other parameters are well

constrained by the transit, such as radius, inclination, and eccentricity, while

others, such as mass, appear to be well constrained by the gravitational phase

curves, which do not a↵ect the depth of the secondary eclipse in our model.

In Figure 4.4, the residuals for our fit to the Kepler-5 b lightcurve show that it

is most descrepant at transit ingress (near � = 1). However, this too may simply

be an artifact of the secondary eclipse modeling issue, as the error values in the

secondary eclipse phase section are orders of magnitude smaller than those in the

transit section due more frequent data point binning during the transit, which

makes the secondary eclipse data points much more influential in determining the

final �2 value. If the model is initially unable to achieve a good secondary eclipse

fit, it will then begin slightly adjusting the transit. This seems rather unlikely

for this system, however, as the secondary eclipse is too weak a signal to even

have distinct ingress and egress points. This is perhaps indicative of a greater

underlying issue in our thermal and reflective phase curve and secondary eclipse
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Figure 4.4: (top) Illustrates the full phase for Kepler-5 b. (bottom) Shows the residuals
after subtracting the best fit model from the data. In this instance, the worst fit by the
model is during ingress near � = 1 during ingress and egress of the primary transit.
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Figure 4.5: Illustrates the data and ReThElDo model lightcurve for Kepler-6 b.
(above) Two phases of the planet’s orbit. (middle left) The secondary eclipse section
of the phase. (bottom left) The entire phase at a scale in which the phase e↵ects are
visible. (bottom right) Transit fit.

modeling. Once the secondary eclipse ingress and egress issue is resolved, we will

know which of these issues is skewing our fitting procedure to produce unrealistic

output parameters.

4.1.3 Kepler-6 b

Many of the results from the Kepler-6 b model fitting procedure agree with

literature values. However, some do not. Our eccentricity is nonzero, therefore it

cannot agree completely with the Esteves et al. (2015) model, which assumes a

circular orbit. Our inclination disagrees with Esteves et al. (2013); Esteves et al.
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Table 4.4: Kepler-6 b: Fixed Parameters.

Parameter Value Reference

R⇤ [R�] 1.391 Dunham et al. (2010)
M⇤ [M�] 1.209 Dunham et al. (2010)
T⇤ [K] 5647 Dunham et al. (2010)
a,b 0.480,0.138 Müller et al. (2013)
g 0.3979 Dunham et al. (2010)

P [days] 3.23472 Dunham et al. (2010)

Table 4.5: Kepler-6 b: ReThElDo Model �2 = 64.01. 50 walkers 1000 steps

Parameter Best Fit Median Accepted Value Reference

e 0.010 0.00999+0.00001
�0.00002 0a Esteves et al. (2015)

i [deg] 87.22 87.221+0.001
�0.003 86.8± 0.3 Kipping & Bakos (2011)

! [rad] 1.60 1.61+.02
�.01 ... Esteves et al. (2015)

M
p

[MJ] 0.43 0.43+0.07
�0.08 0.617+0.52

�0.051 Kipping & Bakos (2011)
R

p

[RJ] 1.28 1.2843+0.0001
�0.0001 1.208+0.129

�0.049 Kipping & Bakos (2011)
A

g

0.091 0.091+0.004
�0.004 0.070+0.031

�0.034 Esteves et al. (2015)
T
day

[K] 326 592+682
�387 2060+90

�140 Esteves et al. (2015)

(2015), but agrees with that of Kipping & Bakos (2011). Our radius value agrees

with Esteves et al. (2013); Esteves et al. (2015); Kipping & Bakos (2011), but

our mass value does not agree. Esteves et al. (2015) choose to fix the mass value,

so perhaps they encountered a similar issue. Our geometric albedo value agrees

with that of Esteves et al. (2015), but our dayside temperature is thousands

of Kelvin below their calculated value. Our model fitting procedure is able to

constrain parameter values heavily associated with the transit, as was discovered

in our analysis of Kepler-5 b. However, the values most heavily associated with

the secondary eclipse–dayside temperature and geometric albedo–are inaccurate

due to the secondary eclipse modeling error. Once our model includes secondary

eclipse ingress and egress, we may be able to constrain these parameter values to

closer agreement with the literature. However, if our program still struggles to
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find proper fits, there is a deeper underlying issue with our thermal and reflective

phase e↵ect calculations, or perhaps with our calculation of secondary eclipse

depth.

The triangle plot illustrating the Kepler-6 b fitting process, shown in Figure

4.6, shows that some terms, such as inclination, mass, radius, and geometric

albedo, are fit by Gaussian distributions of walkers surrounding the selected best

fit value. In contrast, for the eccentricity, argument of periastron, and temperature

parameters, the walkers are unable to settle around a parameter value and instead

collect at the upper or lower boundaries of their possible values. Relative to the

fitting procedure of Kepler-5 b, this fitting procedure has been very successful,

which is likely a result of the greater number of walkers and steps. It is particularly

interesting that the geometric albedo fitting is so strongly Gaussian while the

temperature fit is poorly constrained, as both parameters are innately coupled in

both the phase curve and secondary eclipse modeling process.

Our model does an acceptable job fitting certain parameters of Kepler-6 b

heavily associated with transit characteristics. However, as is apparent in Figure

4.7, the transit fit is far from perfect. Upon removal of the secondary eclipse error,

the fitting procedure will no longer be forced to attempt to compensate for the

model’s insu�ciencies at modeling secondary eclipse ingress and egress. This may

allow us to calculate all parameter values within the realm of reasonable possi-

bilities, perhaps even improving on the fits of Esteves et al. (2015) by including

eccentricity as a free parameter. Kipping & Bakos (2011) calculate one possible

eccentric orbit of Kepler-6 b, so allowing flexibility in this parameter will make for

a more robust model. If the secondary eclipse ingress and egress does not end up

being the underlying issue, then we will explore ways in which our thermal and

reflective phase curve and secondary eclipse depth calculations may be o↵. We
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Figure 4.6: This triangle plot shows the movement of the walkers through parameter
space during the course of the fitting procedure for the ReThElDo model applied to
Kepler-6 b. For some parameters, the walkers settle around the best fit value in a
Gaussian manner, while for others they run up against boundaries. The parameters
displayed here are, from top to bottom, (1) e, (2) i, (3) !, (4) M

p

, (5) R
p

, (6) A
g

, (7)
T
day

, (8) Flux o↵set.
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Figure 4.7: (top) Illustrates the full phase for Kepler-6 b. (bottom) Shows the residuals
after subtracting the best fit model from the data. In this instance, the worst fit by the
model is during both ingress and egress, which may indicate a poor eccentricity value.
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shall now move to targets with higher magnitude secondary eclipses and phase

variations to fully test our model’s abilities.

4.1.4 Kepler-7 b

Table 4.6: Kepler-7 b: Fixed Parameters.

Parameter Value Reference

R⇤ [R�] 1.843 Latham et al. (2010)
M⇤ [M�] 1.347 Latham et al. (2010)
T⇤ [K] 5933 Latham et al. (2010)
a,b 0.374,0.185 Müller et al. (2013)
g 0.3442 Latham et al. (2010)

P [days] 4.88553 Latham et al. (2010)

Table 4.7: Kepler-7 b: ReThElDo Model �2 = 17.14. 30 walkers 1000 steps

Parameter Best Fit Median Accepted Value Reference

e 0.010 0.00996+0.00003
�0.00005 0a Esteves et al. (2015)

i [deg] 86.54 86.541+0.002
�0.003 86.5+2.0

�1.4 Kipping & Bakos (2011)
! [rad] 5.05 5.06+.01

�.01 ... Esteves et al. (2015)
M

p

[MJ] 0.53 0.60+0.14
�0.14 0.441a Esteves et al. (2015)

R
p

[RJ] 1.44 1.4418+0.0004
�0.0018 1.45+0.18

�0.15 Kipping & Bakos (2011)
A

g

0.022 0.032+0.026
�0.023 0.248+0.073

�0.071 Esteves et al. (2015)
T
day

[K] 2315 2297+33
�54 2510+90

�110 Esteves et al. (2015)

The run on Kepler-7 b further demonstrates the established strengths and

weaknesses of our model. Unlike Kepler-5 b and Kepler-6 b, Kepler-7 b has a clear

secondary eclipse. As shown in Table 4.4, our calculated mass is in agreement with

literature values (Latham et al. 2010; Esteves et al. 2015; Demory et al. 2011),

but our albedo and temperature parameters do not agree, as is usually the case.

Interestingly, while our radius and inclination parameters are not in agreement

with those of Esteves et al. (2015) and Demory et al. (2011), they do agree to
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the values found by Kipping & Bakos (2011); Latham et al. (2010). This is likely

because Esteves et al. (2015) and Demory et al. (2011) calculate a slightly smaller

inclination value than this work, Kipping & Bakos (2011), and Latham et al.

(2010) do. The movement of walkers through parameter space during the fitting

process, shown in Figure 4.9, shows an interesting bimodality in fitting for radius,

which may be hinting at the second possible radius-inclination combination found

in Esteves et al. (2015) and Demory et al. (2011). Aside from the eccentricity

running up against its upper limit and albedo against its lower limit, the remaining

distributions on the triangle plots are mostly Gaussian, indicating that the fitting

procedure was successful.

While Esteves et al. (2015) assume a circular orbit for Kepler-7 b, we calculate

a nonzero eccentricity value. Other studies that have analyzed this system without

assuming its orbit to be circular have found nonzero eccentricity values (Demory

et al. 2011; Kipping & Bakos 2011). Our value of e = 0.01 is closer to that of

Demory et al. (2011) than to the significantly larger value calculated by Kipping

& Bakos (2011). We conclude that our model does a commendable job finding

parameter values for eccentricity, inclination, radius, and mass. However, it still

fails to produce dayside temperature and geometric albedo values that agree with

boundaries from the literature. More disturbingly, perhaps, the values for dayside

temperature and albedo are both depressed relative to the literature values. If

the issue were simply degeneracy between these two parameters, one would be

inflated while the other is depressed. Because both parameters are of insu�cient

magnitude, there is a greater underlying issue generating this problem. Some

residuals can be seen during egress of the transit in Figure 4.10. This is likely

because Kepler-7 b produces the deepest secondary eclipse aside from that of

HAT-P-7 b, which means the ingress and egress data points that are not properly
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Figure 4.8: Illustrates the data and ReThElDo model lightcurve for Kepler-7 b.
(above) Two phases of the planet’s orbit. (middle left) The secondary eclipse section
of the phase. (bottom left) The entire phase at a scale in which the phase e↵ects are
visible. (bottom right) Transit fit.
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Figure 4.9: This triangle plot shows the movement of the walkers through parameter
space during the course of the fitting procedure for the ReThElDo model applied to
Kepler-7 b. For some parameters, the walkers settle around the best fit value in a
Gaussian manner, while for others they run up against boundaries. The parameters
displayed here are, from top to bottom, (1) e, (2) i, (3) !, (4) M

p

, (5) R
p

, (6) A
g

, (7)
T
day

, (8) Flux o↵set.
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Figure 4.10: (top) Illustrates the full phase for Kepler-7 b. (bottom) Shows the
residuals after subtracting the best fit model from the data. In this instance, the worst
fit by the model is during egress after � = 0.

modeled are further o↵set from the model than in Kepler-5 b and Kepler-6 b,

forcing the model to skew the transit fit more in order to compensate for the

secondary eclipse modeling error.

As mentioned previously, the secondary eclipse depth is inherently tied to the

magnitude of dayside temperature and geometric albedo. Because our secondary

eclipse model does not fit ingress and egress of the eclipse, the values of these

parameters will be skewed by the fitting algorithm attempting to find a better

fit to these data points. Upon resolution of this issue, our code should be able

to successfully fit the dayside temperature and geometric albedo parameters to

literature values. If it cannot, there is a greater underlying issue in our thermal
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and reflective phase curve and secondary eclipse depth calculations. Once the

ultimate underlying issue is resolved, we will be able to properly fit these final

two parameter values. Furthermore, we shall be able to do so without assuming

a circular orbit, which is a common simplification (Esteves et al. 2013; Esteves

et al. 2015; Shporer & Hu 2015). Other models that have included eccentricity as

a free parameter have found better fits with nonzero eccentricity orbits (Placek

et al. 2014). Furthermore, nonzero eccentricities help disentangle to degeneracy

between the temperature and albedo parameters, as their peaks shift in di↵erent

directions Placek et al. (2014). However, this only begins to work for e > 0.3

Placek et al. (2014). While our calculated nonzero eccentricity for this target is

not su�ciently high to argue for it as a thermal and reflective degeneracy breaking

mechanism, it is still a more physically correct than assuming an eccentricity of

zero. We will continue to fit our models with eccentricity as a free parameter. One

of its primary constraints is the timing of secondary eclipse and transit centers.

With resolution of secondary eclipse modeling issue, our constraint of this free

parameter will likely become even more accurate, which will allow us to calculate

a more physically accurate orbit. The greater accuracy of this orbit will then

propagate through the model, permitting more accurate calculations for our other

parameters.

4.1.5 HAT-P-7 b

The runs on HAT-P-7 b are the most explicitly demonstrative of the secondary

eclipse modeling issue. The intensely apparent multimodality of the triangle plot

in Figure 4.12, with 20 walkers and 300 steps, becomes even more heavily exagger-

ated in Figure 4.13, which has 20 walkers and 2000 steps.The �2 value is improved
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Figure 4.11: Illustrates the data and ReThElDo model lightcurve for HAT-P-7 b.
(above) Two phases of the planet’s orbit. (middle left) The secondary eclipse section of
the phase, which shows a significant decrease in flux compared to other targets. (bottom
left) The entire phase at a scale in which the phase e↵ects are visible. (bottom right)
Transit fit.
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Table 4.8: HAT-P-7 b: Fixed Parameters. R⇤ is the stellar radius, M⇤ is the stellar
mass, T⇤ is the stellar temperature, a and b are the quadratic limb darkening coe�cients,
g is the gravity darkening coe�cient, and P is the period.

Parameter Value Reference

R⇤ [R�] 1.98 Butler et al. (2006)
M⇤ [M�] 1.52 Lund et al. (2014)
T⇤ [K] 6350 Pál et al. (2008)
a,b 0.344,0.1843 Müller et al. (2013)
g 0.2820 Pál et al. (2008)

P [days] 2.204735 Pál et al. (2008)

Table 4.9: HAT-P-7 b: ReThElDo Model �2 = 28.26. 20 walkers 300 steps

Parameter Best Fit Median Accepted Value Reference

e 0.000 0.0002+0.0002
�0.0001 0a Esteves et al. (2015)

i [deg] 82.99 82.996+0.006
�0.002 83.143+0.023

�0.020 Esteves et al. (2015)
! [rad] 2.01 2.01+.01

�.00 ... Esteves et al. (2015)
M

p

[MJ] 1.57 1.58+0.01
�0.01 1.63± 0.13 Esteves et al. (2015)

R
p

[RJ] 1.483 1.4831+0.0001
�0.0002 1.419+0.178

�0.085 Esteves et al. (2015)
A

g

0.207 0.2068+0.0006
�0.0007 0.2044+0.0058

�0.0067 Esteves et al. (2015)
T
day

[K] 829 829+1
�2 2860± 30 Esteves et al. (2015)

Table 4.10: HAT-P-7 b: ReThElDo Model �2 = 27.32. 20 walkers 2000 steps

Parameter Best Fit Median Accepted Value Reference

e 0.003 0.0039+0.0002
�0.0012 0a Esteves et al. (2015)

i [deg] 83.07 83.105+0.005
�0.041 83.143+0.023

�0.020 Esteves et al. (2015)
! [rad] 1.69 1.6905+0.0032

�0.0003 ... Esteves et al. (2015)
M

p

[MJ] 1.57 1.577+0.006
�0.002 1.63± 0.13 Esteves et al. (2015)

R
p

[RJ] 1.483 1.4831+0.0003
�0.0003 1.419+0.178

�0.085 Esteves et al. (2015)
A

g

0.11 0.113+0.003
�0.002 0.2044+0.0058

�0.0067 Esteves et al. (2015)
T
day

[K] 2561 2557+5
�7 2860± 30 Esteves et al. (2015)

in the model with more steps, as is expected during a fitting process. However, the

non-Gaussian, multimodal triangle plots do not indicate that the fitting procedure

robustly explored the entire parameter space. Usually, the MCMC’s walkers will

collect around the best fit values in some Gaussian distribution. Here, however,
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the walkers do not seem to have settled at a steady value for certain parameters.

This is likely indicative of an error that is insurmountable for the fitting process,

such as the secondary eclipse model not fitting the secondary eclipse ingress and

egress points properly.

Our best fit parameters for the 300 step run, shown in Table 4.9, are distinct

from parameters from the other three targets when compared to the literature

(Esteves et al. 2013; Esteves et al. 2015; Placek et al. 2014), in that the albedo

is in agreement while the radius is not. We use a larger stellar radius than do

these three works, therefore it makes sense that our calculated radius is larger.

However, our R
p

/R⇤ value, which does not depend on knowledge of the stellar

radius, is also di↵erent than literature values (Morris et al. 2013; Esteves et al.

2013; Esteves et al. 2015; Placek et al. 2014). Our inclination is in agreement

with literature values, which is interesting, as we would expect it to change in

order to account for the di↵erent planetary radius. The calculated albedo is in

agreement with Esteves et al. (2015), but our dayside temperature is still much

too cool. The dayside temperature from the 2000 walker run is in closer agreement

with literature values than that of the other planets. The thermal and reflective

phase e↵ects are certainly higher for this target than for the others, as revealed by

the deeper secondary eclipse and more pronounced phase e↵ects, which is likely

why the program has an easier time finding reasonable values for their influential

parameters. However, this deeper secondary eclipse depth also worsens the error

caused by the secondary eclipse modeling issue, which prevents the walkers from

settling to the true best fit. Instead, they contort the transit in attempt to fit the

secondary eclipse ingress and egress data points.

When viewing the triangle plots in Figures 4.12 and 4.13 from the two di↵erent

HAT-P-7 b runs of di↵erent lengths, it is clear that multimodality propagates itself
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Figure 4.12: This triangle plot shows the movement of the walkers through parameter
space during the course of the 300 step fitting procedure for the ReThElDo model applied
to HAT-P-7 b. More walkers settle at parameter extremes during the run compared to
the ReThElDo run shown in Figure 4.2. The parameters displayed here are, from top
to bottom, (1) e, (2) i, (3) !, (4) M

p

, (5) R
p

, (6) A
g

, (7) T
day

, (8) Flux o↵set.
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Figure 4.13: This triangle plot shows the movement of the walkers through parameter
space during the course of the 2000 step fitting procedure for the ReThElDo model
applied to HAT-P-7 b. More walkers settle at parameter extremes during the run
compared to the ReThElDo run shown in Figure 4.2. The parameters displayed here
are, from top to bottom, (1) e, (2) i, (3) !, (4) M

p

, (5) R
p

, (6) A
g

, (7) T
day

, (8) Flux
o↵set.
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Figure 4.14: From the 300 step fitting run on the HAT-P-7 b model. (top) Illustrates
the full phase for HAT-P-7 b. (bottom) Shows the residuals after subtracting the best fit
model from the data. In this instance, the worst part of the fit in terms of contribution to
overall �2 value are the six data points before and after � = 0.5, which are the ingress and
egress of the secondary eclipse. Because HAT-P-7 b has the most prominent secondary
eclipse, the secondary eclipse modeling issue has a greater magnitude of negative e↵ect
on our fitting procedure.
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Figure 4.15: From the 2000 step fitting run on the HAT-P-7 b model. (top) Illustrates
the full phase for HAT-P-7 b. (bottom) Shows the residuals after subtracting the best
fit model from the data. For this longer run, the fitting formalism attempts to reduce
the residuals shown before and after � = 0.5 in Figure 4.14, which in turn skews the
transit, as is shown here in the residuals duing ingress and egress.
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continuously, causing walkers not to settle in Gaussian distributions around the

correct parameter values. More importantly, in comparing the residuals in Figure

4.14 and 4.15, it is clear that the program first goes to a fit that agrees well with the

transit, as the run with 300 steps has almost no residuals near the transit section

of the phase. However, the data points of secondary eclipse ingress and egress are

poorly fit. After 2000 steps, the walkers have attempted to settle the discrepancy

of these data points, which have smaller errors and therefore contribute more to

the over �2 value, by contorting the transit fit, as is shown in Figure 4.15. One

possibility is that the secondary eclipse ingress and egress error is very important

for HAT-P-7 b and less important for targets with weaker secondary eclipses.

Alternatively, one of our calculations for the thermal and reflective phase curves,

or the secondary eclipse depth, may be incorrect. The clear next step is to resolve

the obvious and pressing secondary eclipse ingress and egress issue. After this,

if the fitting process still does not work, we will need to explore these other

possibilities.

4.1.6 Discussion

While many of our parameter values are in agreement with the literature, there

still exists a significant flaw in our model that causes the temperature and albedo

calculations to deviate significantly from those in other studies (Esteves et al.

2013; Esteves et al. 2015; Placek et al. 2014; Batygin & Stevenson 2010). The

inability of our model to calculate flux values for secondary eclipse ingress and

egress prevents our fitting algorithm from reaching an actual best fit value. To

combat this, we will need to develop a new secondary eclipse model. Rather than

simply modeling a constant flux, which constitutes the bottom of the secondary
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eclipse, for a duration equal to that of the transit and o↵set by � = 0.5 and

adjusting the eclipse center slightly for eccentricity, we will need to use equations

that describe the geometry of the planet moving behind the star.

The easiest solution is to calculate the duration of ingress and egress, remove

those times from the current secondary eclipse duration, then fit a line between

the out-of-eclipse flux and the bottom of the secondary eclipse. While fitting

a line in this matter would be absolutely horrendous for transit modeling, it is

completely acceptable for secondary eclipse modeling, as limb darkening has no

e↵ect on the slop of depression in the light curve. After we have corrected this

relatively minor error in the model, our fitting algorithm will not be forced to

attempt to compensate for the faults of the model. This will hopefully allow us

to calculate parameters in agreement with those of other phase curve models.

Furthermore, our model may make improvements to the fits in these works by

allowing eccentricity to be a free parameter. As discussed previously, some of

these systems already have predicted nonzero eccentricities, so this will potentially

be a significant improvement to previous models.
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Conclusion

Kepler has irreversibly changed our perspective regarding the prevalence of

planets in our galaxy. Not only has it found thousands of confirmed planets and

even more unconfirmed candidates, it also contains data of su�cient quality to

measure signals from two very subtle flux e↵ects in transiting systems: secondary

eclipses and phase curves. We have generated a data reduction program that re-

duces both transit, secondary eclipse, and phase curve data. It preserves these

weakest of signals and produces very clean transits. Furthermore, we have de-

veloped a model that describes these three types of flux variation. The primary

shortcoming of this model is likely in modeling the ingress and egress of secondary

eclipse, which our program appears incapable of doing. This in turn confuses our

parallel tempered a�ne invariant MCMC fitting routine, which then skews other

portions of the model in order to achieve a better fit at secondary eclipse ingress

and egress.

We have demonstrated the successes and shortcomings of our program through

analysis of Kepler-5 b, Kepler-6 b, Kepler-7 b, and HAT-P-7 b. The residuals and

triangle plots from these runs, especially those from HAT-P-7 b, provide some

evidence that the underlying error is in this secondary eclipse ingress and egress

modeling. Upon resolution of this minor error, we will hopefully ‘constrain the

dayside temperature and geometric albedo, which are currently the most prob-
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lematic of the output parameters. Most of our other parameters, especially those

correlated primarily with the transit, and even those that relate primarily to the

gravitational phase e↵ects, agree with literature values. This is a heartening sign

that the final remaining issue is in the secondary eclipse ingress and egress, as

the terms responsible for defining the magnitude of secondary eclipse are dayside

temperature and geometric albedo.

Upon resolution of this final issue, the model can be applied to characterize

the orbits, radii, masses, and atmospheric characteristics of dozens of Kepler ex-

oplanets. It may even successfully characterize some targets that eluded proper

fitting in the past, as our model is able to fit eccentric orbits while most currently

assume a circular orbit. In addition to this greater detail, our model has the capac-

ity to be improved in order to even more deeply characterize these targets. This

improvement will come in the form of o↵setting the thermal and reflected phase

curves from one another, which is physically equivalent from shifting the hottest

area of the planet away from the area receiving the most direct stellar radiation.

This may allow us to measure wind speeds on hot-Jupiters, which have fascinating

implications for other exoplanet characteristics that are di�cult to probe, such as

magnetic field. The more detail our model encapsulates, the smaller a physical

e↵ect we will be able to measure. This holds true in the addition of the secondary

eclipse to transit models, followed by the addition of phase e↵ects to these mod-

els. O↵setting these phase e↵ects to probe even more subtle flux variations will

allow us to take the next major step in improving the detailed nature of models

to Kepler lightcurves.
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5.1 Future Work

Exoplanetary Winds Close orbiting hot-Jupiters become tidally locked to

their host stars on a relatively short time scale, which creates extreme temper-

ature di↵erences between their day and night sides. This temperature gradient

drives planetary winds that redistribute dayside heat to the nightside, which in

turn decreases the temperature contrast between the two sides. In close orbiting,

tidally locked, non-eccentric systems, there is a significant degeneracy between

thermal and reflective flux contributions to the combined phase curve flux. How-

ever, these dayside to nightside winds, which can travel at supersonic velocities,

may induce a phase lag between the thermal and reflected flux contributions, as

they will shift the hottest region of the planet to a di↵erent area than that of

maximum reflection. This e↵ect may provide a mechanism for breaking this pa-

rameter degeneracy while simultaneously providing a means of measuring wind

velocities on hot-Jupiters as a function of planetary radius. We will add this e↵ect

to a preexisting phase curve model to test for improvement of fits to Kepler data.

K2 The second phase of the Kepler mission, K2, utilizes pressure from solar

radiation to stabilize the space telescope though only two of its four reaction

wheels remain functional. Because the telescope is in an Earth trailing orbit, it

must change its field of view every 83 days, 75 of which are dedicated to science.

Though data quality is inferior to that of the original Kepler mission, both in

terms of noise and duration of time spent on a given field of view, this clever

extension of the mission provides an opportunity to discover and characterize

exoplanets around thousands of other stars. According to the NASA Exoplanet

Archive, there are currently 270 exoplanet candidates in K2 data, 21 of which have
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been confirmed, 6 of which were false positives (Montet et al. 2015). Though none

of the confirmed exoplanets are in systems likely to have high magnitude phase

e↵ects, WASP-47 b and WASP-28 b (K2-1) may produce phase curves noticeable

in K2 data. We will look for signs of secondary eclipses and phase curves in the

short-cadence data from Vanderburg & Johnson (2014) and assess the feasibility

of this study once K2 hot-Jupiter exoplanet candidates are confirmed.

Nontransiting Exoplanets Phase e↵ects are present even in non-transiting

systems. Spitzer has measured phase curves from the HD 179949b (Cowan et al.

2007) and CoRoT has measured those from HD 46375b (Gaulme et al. 2010), both

of which are nontransiting. Exoplanets detected by their phase e↵ects would likely

be followed up by coronagraph studies, which means there is interest in discovering

objects with periods greater than 100 days. This requires long lightcurves, such

as those from Kepler. However, the long-term stability and photometric precision

required for making these measurements is thought to be beyond the scope of

Kepler (Kane & Gelino 2011). A significantly clever splining process would need

to be developed to detrend data while still preserving the phase e↵ects signal.

Without the periodicity of a transit, it is di�cult to estimate the periodicity

of the phase e↵ects from a nontransiting system. This is vital information for

a detrending process conducive to preservation of phase e↵ect signal. If phase

e↵ects from nontransiting systems cannot be detected in Kepler data, our model

can be applied to data from Spitzer for studies similar to those of (Cowan et al.

2007) and (Gaulme et al. 2010). We will discuss the feasibility of implementing

all three of these aforementioned extensions to modern phase curve analysis.
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Figure 5.1: This true color image of Jupiter was taken by NASA’s Cassini spacecraft
on its journey to Saturn. Zonal recirculation is apparent in the distinct banding that
has been seen by humans in Jupiter’s atmosphere since the 17th century. These zonal
flows are permeated by oval shaped vortices, which range from the Great Red Spot
to smaller storms of various colors. The circulation of Jupiter’s atmosphere operates
under much cooler temperatures than those of its hot-Jupiter cousins. This means the
wind speeds are generally slower in Jupiter than in hot-Jupiters, as the latter must
redistribute vastly greater amounts of energy between their permanent day and night
sides. From NASA/JPL/Space Science Institute.

5.1.1 Exoplanetary Winds

The necessity of dynamic winds in models of exoplanet atmospheres, especially

those of gas giants, is conspicuous thanks to Jupiter, shown in remarkable Cassini

image quality in Figure 5.1. Even small telescopes can observe its atmospheres

zonal (east-west) bands, the Great Red Spot, and small active storms. There are

two catagories of zonal bands –those that rotate in the same direction as the planet

(belts) and those that rotate in the opposite direction (zones). Approximately 30
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of these bands exist on Jupiters surface (Vasavada & Showman 2005). They are

permeated by vortices of all sizes, rotational directions, ages, and colors that range

from the long-lived and enormous Great Red Spot to comparatively small and

short-lived spirals. There are also storms which mark sites of intensely localized

convection (Vasavada & Showman 2005). For the purposes of exoplanetary winds,

specifically those which can be measured with phase curves, we are primarily

interested in large-scale zonal convective processes.

While the winds of Jupiter reach maximum speeds of about 150 ms�1, winds

of 2 kms�1 have been measured on HD209458 b with 95% statistical significance

confidence level (Snellen et al. 2010). To do this, the authors measured a 2 kms�1

blueshift in carbon monoxide absorption features in the planets atmosphere. These

tremendously fast winds shift the hot spot on the planets dayside eastward of the

zone receiving the most direct solar radiation (substellar point) by 40.9� ± 6.0�

(Zellem et al. 2014). This group measured windspeed via phase curves from Spitzer

at 4.5µm wavelengths. The phase curve maximum occurs 9.6±1.4 hours before the

secondary eclipse, which is indicative of equatorial superrotating winds induced

by tidal-locking to HD209458. This agrees with circulation models of hot-Jupiters

that are tidally locked to their host star, which have included superrotation since

Showman & Guillot (2002) predicted it for 51-Pegasus b-like planets.

The original Showman & Guillot (2002) model uses angular momentum con-

servation requirements at di↵erent temperatures and pressures in di↵erent atmo-

spheric layers to produce a numerical simulation of atmospheric circulation, which

reaches a steady state after ⇠400 Earth-days. Considering these simulations, the

authors predict a cloud-free dayside, with clouds condensating on the night side

of the planet due to material being exposed to equal pressures but lower tem-

peratures. These clouds then sublimate when they hit the dayside. More recent
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versions of this type of model, such as Rauscher & Menou (2013), include ohmic

dissipation and the drag e↵ect of exoplanets magnetic field. Ohmic dissipation,

also known as Joule heating, describes the process of heat release through the

passing of current through a conductor. In this case, the exoplanet is the con-

ductor. It may be responsible for the inflated radii of hot-Jupiters (Batygin &

Stevenson 2010), though this remains unresolved (Huang & Cumming 2012).

As shown in Figure 5.2, increasing the strength of the magnetic field in the

Rauscher & Menou (2013) model significantly slows the wind speed. This in turn

stops the warping of the hot zone by wind transportation, as shown in Figure 5.3.

This warping shifts the center of the hot zone away from the substellar point. It

is unlikely that the planetary hotspot would depart from the equator. For their

HD209458 b model with no magnetic field, peak thermal emission was shifted from

the substellar point by 12�, while magnetic field models have peak emission aligned

with the substellar point to between zero and three degrees. For HD189733 b, the

model gives the same e↵ective longitude of peak thermal emission (17� o↵set from

substellar point) for each magnetic field. In the future, wind speeds may be used

to probe the magnetic fields of exoplanets, as hot-Jupiters without superrotating

jets would likely have powerful magnetic fields. It is predicted that most will not,

however, as tidal locking is thought to induce weak magnetic fields (Grießmeier

et al. 2004). Studies of exoplanet winds can therefore contribute to research on

exoplanetary magnetic fields and their evolution.

The flow fields of exoplanet atmospheres are not monodirectional by any

means. They change drastically with depth, as illustrated in Figure 5.4. However,

there is a dominant direction of overall wind magnitude, which is the direction of

the equatorial superrotating jet.

Cowan & Agol (2011) model a close orbiting hot-Jupiters atmosphere and its
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Figure 5.2: Illustrates the change in wind speed (top) and ohmic heating (bottom)
with respect to magnetic field strength. The line colors are indicative of magnetic field
strength. Black is the model for HD 209458 b with a magnetic field of strength B = 0,
red is the model for HD 209458 b with strength B = 3, and blue is the model for HD
209458 b with B = 10. Purple corresponds to the model for HD 189733 b with magnetic
field strength B = 30. Clearly an increased magnetic field serves to slow the wind on
HD 209458 b, while the winds of HD 189733 b remain relatively strong. From Rauscher
& Menou (2013).
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Figure 5.3: Shows the warping of the hot zone from the substellar point, which is
at zero on these plots. The warping of the hot zones creates an o↵set between the
substellar point and the zone of maximal thermal radiation, which may be detectable in
phase e↵ects if it is displaced far enough. The left column is the model for HD 187933
b and the right is HD 209458 b with rows corresponding to B = 0 G (top row), B = 3
G (second row), B = 10 G (third row), and B = 30 G (fourth row). Clearly increasing
the strength of HD 209458 bs magnetic field significantly centers the hot zone on the
substellar point, as it greatly drags circulating winds. On HD 189733 b, the o↵set
persists in all modeled magnetic fields to a level detectable by phase curve analysis.
From Rauscher & Menou (2013).
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Figure 5.4: Recirculation flow maps at di↵erent layers of a model atmosphere of HD
209458 b. The P value corresponds to the pressure at that level of the atmosphere.
P = 2.13 mbar (top left), P = 216 mbar (top right), P = 4.69 mbar (bottom left)
and P = 21.9 mbar (bottom right). Clearly the upper-most layers of the atmosphere
circulate more freely, radiating outwards from the hot zone. At deeper depths, such as
216 mbar, the equatorial superrotation can be seen, with lingering heat from the hot
zone still readily apparent. At 4.69 bars, the superrotating jet is flowing at extremely
fast speeds and carries a significant amount of heat with it. The higher latitude zones of
the planet, especially those beneath the hotzone and above and below the jets, become
distinctly colder than the rest of that atmospheric layer. In the deeper layers of the
atmosphere, the dominant feature is a distinctly cold zone underneath the superrotating
wind jet From Heng et al. (2011).
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Figure 5.5: The dashed line marks the transit and the dotted line marks the secondary
eclipse. Illustrates the modeled changing phase curve of HD 189733 b with respect to
radiative timescale and wind speed, where the units of windspeed are the exoplanets
rotational velocity. Clearly the fastest winds (blue) create the greatest spreading of
thermal flux, which causes the drop in amplitude maximum, and the greatest o↵set in
the hot zone from the substellar point. If the wind speed is less than that of the planets
rotational velocity (red), the phase curve peak occurs after the secondary eclipse. From
Cowan & Agol (2011).

resulting light curve. The o↵set of the phase e↵ect maxima from the location of

secondary eclipse is a function of the radiative timescale and the rotational ve-

locity of the wind. These parameters are degenerate, which presents the greatest

challenge for this type of study. Eccentricity and argument of periastron are other

important parameters for characterizing the lightcurve, but these are nondegen-

erate. For eccentric orbits of su�ciently long period, such as those of HAT-P-2b,

HD 17156b, and HD 80606b, a distinct ringing is produced in the lightcurve from

the hotspot rotating in and out of view. The o↵set of thermal phase maxima,

as well as the behavior induced by eccentric, long period orbits, is illustrated in

Figure 5.5 and Figure 5.6 for the test cases for HD 189733 b and HAT-P-2 b.

This enhancement to the traditional phase curve model could have significant
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Figure 5.6: The dashed line marks the transit and the dotted line marks the secondary
eclipse. Illustrates the change in modeled phase e↵ects for HAT-P-2 b given di↵erent
radiative timescales and wind speeds. The high eccentricity and relatively long period
of this exoplanet can produce a ringing e↵ect in the phase curve with the resonant wind
velocity. The models with higher wind speeds clearly dissipate heat more e�ciently, as
they are of lower maximal amplitude, but do not drop in magnitude as quickly through
the rest of the phase. From Cowan & Agol (2011).
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use if applied to Kepler data. It would illuminate wind speeds for a plethora

of hot-Jupiters, given an assumed radiative dissipation model. Furthermore, the

prominent degeneracy between the thermal and reflective phase curves could be

broken through addition of this o↵set, as the substellar zone will always be the

area of maximal reflection, assuming the exoplanet has a uniform albedo. Not

only are wind speeds critical for constraining models of exoplanet atmosphere

dynamics, they also may provide a mechanism through which the strength of an

exoplanet’s magnetic field can be estimated. This would be a significant addition

to exoplanet research, as methods for probing exoplanet interiors are relatively

limited at present. The next step is to add the radiative timescale and rotational

wind speed e↵ects to a phase curve model that includes all four primary phase

e↵ects, such as the one presented in this thesis. Such a model could even fur-

ther enrich the treasure of information regarding exoplanet characteristics found

in Kepler lightcurves. Once a significant number of exoplanet wind speeds are

measured, mechanisms underlying the magnitude and speed of recirculation can

be understood and accessed, namely magnetic field strength. A modest sample

of three exoplanet phase curves by Cowan et al. (2007) favors varying degrees of

recirculation. The phase curve of ⌫ Andromedae b (Harrington et al. 2006) is in-

dicative of strong diurnal temperature variations, which is consistent with slower

winds and a lesser degree of circulation. Determining the physical and evolution-

ary reasons behind these observations will grant astronomers deeper insight into

the internal and external dynamics of hot-Jupiters.
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5.1.2 K2

As of now, none of the confirmed candidates for K2 exoplanets have shown

signs of phase curves or occultations. Most are poor candidates for production of

phase curves, as they are mostly sub-Jovian sized objects orbiting relatively small

stars. However, in the future, K2 will likely discover hot-Jupiters in its fields,

which may show signs of occultations. Cold, large planets may still induce the

gravitational phase e↵ects in their host stars. Močnik et al. (2016) attempt to

measure the secondary eclipse of WASP-157 b and find the signal is not strong

enough to be picked up in K2 data. Secondary occultation and phase curve

analysis for K2 targets will likely have to wait until more hot-Jupiter targets are

discovered. After a few more campaigns, perhaps, our model can be applied to

K2 data.

5.1.3 Non-transiting Systems

Phase e↵ects have been used to study nontransiting extrasolar planets such as

� Andromedae b (Harrington et al. 2006), HD 179949 b (Cowan et al. 2007), and

HD 46375 b (Gaulme et al. 2010), the former two with Spitzer and the latter with

CoRoT. The phase curve for � Andromedae b is illustrated in Figure 5.7. They

have not, however, been studied in Kepler data, as the long-term stability of the

Kepler lightcurve requires a thorough detrending process that would likely rid the

system of its nontransiting phase curves. Even without utilization of Kepler data

for non-transiting system analysis, phase e↵ects can still be used to successfully

probe non-transiting planets observed with other space telescopes, as is proven by

the aforementioned studies. Dedication of Spitzer time to observations of other

tidally locked hot-Jupiter systems, both transiting and nontransiting, will give
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Figure 5.7: Phase curve for the nontransiting exoplanet � Andromedae b measured
using the 24µm channel of the Multiband Imaging Photometer for Spitzer. Thermal
emission is thought to dominate the phase e↵ects measureable from this 0.69 M

Jup

minimum mass planet with an orbital period of 4.617 days (Harrington et al. 2006),
as it is close enough to � Andromedae to be extremely hot, but too small to induce
gravitational phase e↵ects on the F star. The filled points are the phase curve data
after calibrations have been applied. The open points are the same data points shifted
over by one phase. From Harrington et al. (2006).

more samples of exoplanet wind speeds. Eventually, this sample set will become

robust enough to assess the physical and evolutionary mechanisms that produce

the seemingly diverse recirculation rates of close orbiting exoplanets.

5.2 Summary and Final Acknowledgements

Exoplanet science has progressed significantly in the last two decades since the

discovery of 51 Pegasi b by Mayor & Queloz (1995). We can now make assessments

of exoplanet atmosphere characteristics through both single-band photometry and
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spectroscopy. We have developed a transit, secondary eclipse, and phase curve

model that fits to Kepler data. Its e↵ectiveness in calculating many planetary pa-

rameters has been demonstrated on multiple Kepler exoplanets. Addition of more

details to this model, specifically those related to exoplanetary wind measurement,

would make it even more useful for characterizing exoplanets. It would provide a

means to break the temperature and albedo parameter degeneracies by separat-

ing the thermal and reflective phase e↵ects through the addition of wind. Phase

curve models represent our most detailed understanding of lightcurve analysis, as

they incorporate every possible contributing flux e↵ect. This in turn makes them

the most useful exoplanet models to be applied to single-band photometry. Our

phase curve model will continue to be improved in order to further advance our

knowledge of exoplanetary properties.

This research has made use of the NASA Exoplanet Archive, which is oper-

ated by the California Institute of Technology, under contract with the National

Aeronautics and Space Administration under the Exoplanet Exploration Program.

This paper includes data collected by the Kepler mission. Funding for the Kepler

mission is provided by the NASA Science Mission directorate.
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